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Abstract

Despite the proven efficacy of hyperspectral imaging in

many computer vision tasks, its widespread use is hindered

by its low spatial resolution, resulting from hardware lim-

itations. We propose a hyperspectral image super resolu-

tion approach that fuses a high resolution image with the

low resolution hyperspectral image using non-parametric

Bayesian sparse representation. The proposed approach

first infers probability distributions for the material spec-

tra in the scene and their proportions. The distributions

are then used to compute sparse codes of the high resolu-

tion image. To that end, we propose a generic Bayesian

sparse coding strategy to be used with Bayesian dictionar-

ies learned with the Beta process. We theoretically analyze

the proposed strategy for its accurate performance. The

computed codes are used with the estimated scene spec-

tra to construct the super resolution hyperspectral image.

Exhaustive experiments on two public databases of ground

based hyperspectral images and a remotely sensed image

show that the proposed approach outperforms the existing

state of the art.

1. Introduction

Spectral characteristics of hyperspectral imaging have

recently been reported to enhance performance in many

computer vision tasks, including tracking [22], recognition

and classification [14], [32], [28], segmentation [25] and

document analysis [20]. They have also played a vital role

in medical imaging [34], [18] and remote sensing [13], [4].

Hyperspectral imaging acquires a faithful spectral represen-

tation of the scene by integrating its radiance against several

spectrally well-localized basis functions. However, contem-

porary hyperspectral systems lack in spatial resolution [2],

[18], [11]. This fact is impeding their widespread use. In

this regard, a simple solution of using high resolution sen-

sors is not viable as it further reduces the density of the

photons reaching the sensors, which is already limited by

the high spectral resolution of the instruments.

Figure 1. Left: A 16 × 16 spectral image at 600nm. Center: The

512× 512 super resolution spectral image constructed by the pro-

posed approach. Right: Ground truth (CAVE database [30]).

Due to hardware limitations, software based approaches

for hyperspectral image super resolution (e.g. see Fig. 1)

are considered highly attractive [2]. At present, the spatial

resolution of the systems acquiring images by a gross quan-

tization of the scene radiance (e.g. RGB and RGB-NIR) is

much higher than their hyperspectral counterparts. In this

work, we propose to fuse the spatial information from the

images acquired by these systems with the hyperspectral

images of the same scenes using non-parametric Bayesian

sparse representation.

The proposed approach fuses a hyperspectral image with

the high resolution image in a four-stage process, as shown

in Fig. 2. In the first stage, it infers probability distribu-

tions for the material reflectance spectra in the scene and a

set of Bernoulli distributions, indicating their proportions

in the image. Then, it estimates a dictionary and trans-

forms it according to the spectral quantization of the high

resolution image. In the third stage, the transformed dic-

tionary and the Bernoulli distributions are used to compute

the sparse codes of the high resolution image. To that end,

we propose a generic Bayesian sparse coding strategy to be

used with Bayesian dictionaries learned with the Beta pro-

cess [23]. We theoretically analyze the proposed strategy

for its accurate performance. Finally, the computed codes

are used with the estimated dictionary to construct the su-

per resolution hyperspectral image. The proposed approach

not only improves the state of the art results, which is veri-

fied by exhaustive experiments on three different public data

sets, it also maintains the advantages of the non-parametric

Bayesian framework over the typical optimization based ap-

proaches [2], [18], [29], [31].
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Figure 2. Schematics of the proposed approach: (1) Sets of distributions over the dictionary atoms and the support indicator vectors are

inferred non-parametrically. (2) A dictionary Φ is estimated and transformed according to the spectral quantization of the high resolution

image Y. (3) The transformed dictionary and the distributions over the support indicator vectors are used for sparse coding Y. This step is

performed by the proposed Bayesian sparse coding strategy. (4) The codes are used with Φ to construct the target super resolution image.

The rest of the paper is organized as follows. After re-

viewing the related literature in Section 2, we formalize the

problem in Section 3. The proposed approach is presented

in Section 4 and evaluated in Section 5. Section 6 provides

a discussion on the parameter settings of the proposed ap-

proach, and Section 7 concludes the paper.

2. Related Work

Hyperspectral sensors have been in use for nearly two

decades in remote sensing [13]. However, it is still difficult

to obtain high resolution hyperspectral images by the satel-

lite sensors due to technical and budget constraints [17].

This fact has motivated considerable research in hyperspec-

tral image super resolution, especially for remote sensing.

To enhance the spatial resolution, hyperspectral images are

usually fused with the high resolution pan-chromatic im-

ages (i.e. pan-sharpening) [25], [11]. In this regard, con-

ventional approaches are generally based on projection and

substitution, including the intensity hue saturation [16] and

the principle component analysis [10]. In [1] and [7] , the

authors have exploited the sensitivity of human vision to

luminance and fused the luminance component of the high

resolution images with the hyperspectral images. However,

this approach can also cause spectral distortions in the re-

sulting image [8].

Minghelli-Roman et al. [21] and Zhukov et al. [35] have

used hyperspectral unmixing [19], [3] for spatial resolu-

tion enhancement of hyperspectral images. However, their

methods require that the spectral resolutions of the images

being fused are close to each other. Furthermore, these ap-

proaches struggle in highly mixed scenarios [17]. Zurita-

Milla et al. [36] have enhanced their performance for such

cases using the sliding window strategy.

More recently, matrix factorization based hyperspectral

image super resolution for ground based and remote sens-

ing imagery has been actively investigated [18], [29], [17],

[31], [2]. Approaches developed under this framework fuse

high resolution RGB images with hyperspectral images.

Kawakami et al. [18] represented each image from the two

modalities by two factors and constructed the desired im-

age with the complementary factors of the two representa-

tions. Similar approach is applied in [17] to the remotely

acquired images, where the authors used a down-sampled

version of the RGB image in the fusion process. Wycoff

et al. [29] developed a method based on Alternating Direc-

tion Method of Multipliers (ADMM) [6]. Their approach

also requires prior knowledge about the spatial transform

between the images being fused. Akhtar et al. [2] pro-

posed a method based on sparse spatio-spectral representa-

tion of hyperspectral images that also incorporates the non-

negativity of the spectral signals. The strength of the ap-

proach comes from exploiting the spatial structure in the

scene, which requires processing the images in terms of

spatial patches and solving a simultaneous sparse optimiza-

tion problem [27]. Yokoya et al. [31] made use of coupled

feature space between a hyperspectral and a multispectral

image of the same scene.

Matrix factorization based approaches have been able

to show state of the art results in hyperspectral image su-
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per resolution using the image fusion technique. However,

Akhtar et al. [2] showed that their performance is sensi-

tive to the algorithm parameters, especially to the sizes of

the matrices (e.g. dictionary) into which the images are fac-

tored. Furthermore, there is no principled way to incorpo-

rate prior domain knowledge to enhance the performance of

these approaches.

3. Problem Formulation

Let Yh ∈ R
m×n×L be the acquired low resolution hy-

perspectral image, where L denotes the spectral dimen-

sion. We assume availability of a high resolution image

Y ∈ R
M×N×l (e.g. RGB) of the same scene, such that

M ≫ m, N ≫ n and L ≫ l. Our objective is to estimate

the super resolution hyperspectral image T ∈ R
M×N×L

by fusing Y and Yh. For our problem, Yh = Ψh(T)
and Y = Ψ(T), where Ψh : R

M×N×L → R
m×n×L and

Ψ : R
M×N×L → R

M×N×l.

Let Φ ∈ R
L×|K| be an unknown matrix with columns

ϕk, where k ∈ K = {1, ...,K} and |.| denotes the car-

dinality of the set. Let Y
h

= ΦB, where the matrix

Y
h
∈ R

L×mn is created by arranging the pixels of Yh as

its columns and B ∈ R
|K|×mn is a coefficient matrix. For

our problem, the basis vectors ϕk represent the reflectance

spectra of different materials in the imaged scene. Thus,

we also allow for the possibility that |K| > L. Normally,

|K| ≪ mn because a scene generally comprises only a few

spectrally distinct materials [2]. Let Φ̂ ∈ R
l×|K| be such

that Y = Φ̂A, where Y ∈ R
l×MN is formed by arranging

the pixels of Y and A ∈ R
|K|×MN is a coefficient matrix.

The columns of Φ̂ are also indexed in K. Since Y
h

and Y

represent the images of the same scene, Φ̂ = ΥΦ, where

Υ ∈ R
l×L is a transformation matrix, associating the spec-

tral quantizations of the two imaging modalities. Similar to

the previous works [2], [18], [29], this transform is consid-

ered to be known a priori.

In the above formulation, pixels of Y and Yh are likely

to admit sparse representations over Φ̂ and Φ, respectively,

because a pixel generally contains very few spectra as com-

pared to the whole image. Furthermore, the value of |K|
can vary greatly between different scenes, depending on the

number of spectrally distinct materials present in a scene.

In the following, we refer to Φ as the dictionary and Φ̂ as

the transformed dictionary. The columns of the dictionar-

ies are called their atoms and a complementary coefficient

matrix (e.g. A) is referred as the sparse code matrix or the

sparse codes of the corresponding image. We adopt these

conventions from the sparse representation literature [24].

4. Proposed Approach

We propose a four-stage approach for hyperspectral im-

age super resolution that is illustrated in Fig. 2. The pro-

posed approach first separates the scene spectra by learn-

ing a dictionary from the low resolution hyperspectral im-

age under a Bayesian framework. The dictionary is trans-

formed using the known spectral transform Υ between the

two input images as Φ̂ = ΥΦ. The transformed dictionary

is used for encoding the high-resolution image. The codes

Ã ∈ R
|K|×MN are computed using the proposed strategy.

As shown in the figure, we eventually use the dictionary

and the codes to construct T = ΦÃ, where T ∈ R
L×MN

is formed by arranging the pixels of the target image T.

Hence, accurate estimation of Ã and Φ is crucial for our ap-

proach, where the dictionary estimation also includes find-

ing its correct size, i.e. |K|. Furthermore, we wish to in-

corporate the ability of using the prior domain knowledge

in our approach. This naturally leads towards exploiting

the non-parametric Bayesian framework. The proposed ap-

proach is explained below, following the sequence in Fig. 2.

4.1. Bayesian Dictionary Learning

We denote the ith pixel of Yh by yh
i ∈ R

L, that ad-

mits to a sparse representation βh
i ∈ R

|K| over the dic-

tionary Φ with a small error ǫh
i ∈ R

L. Mathematically,

yh
i = Φβh

i + ǫh
i . To learn the dictionary in these settings1,

Zhou et al. [33] proposed a beta process [23] based non-

parametric Bayesian model, that is shown below in its gen-

eral form. In the given equations and the following text,

we have dropped the superscript ‘h’ for brevity, as it can be

easily deduced from the context.

yi = Φβi + ǫi ∀i ∈ {1, ...,mn}

βi = zi ⊙ si

ϕk ∼ N (ϕk|µko
,Λ−1

ko
) ∀k ∈ K

zik ∼ Bern(zik|πko
)

πk ∼ Beta(πk|ao/K, bo(K − 1)/K)

sik ∼ N (sik|µso
, λ−1

so
)

ǫi ∼ N (ǫi|0,Λ−1

ǫo
)

In the above model, ⊙ denotes the Hadamard/element-

wise product; ∼ denotes a draw (i.i.d.) from a distribution;

N refers to a Normal distribution; Bern and Beta repre-

sent Bernoulli and Beta distributions, respectively. Further-

more, zi ∈ R
|K| is a binary vector whose kth component

zik is drawn from a Bernoulli distribution with parameter

πko
. Conjugate Beta prior is placed over πk, with hyper-

parameters ao and bo. We have used the subscript ‘o’ to

distinguish the parameters of the prior distributions. We re-

fer to zi as the support indicator vector, as the value zik = 1
indicates that the kth dictionary atom participates in the ex-

pansion of yi. Also, each component sik of si ∈ R
|K| (the

weight vector) is drawn from a Normal distribution.

1The sparse code matrix B (with βh
i∈{1,...,mn} as its columns) is also

learned. However, it is not required by our approach.
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For tractability, we restrict the precision matrix Λko
of

the prior distribution over a dictionary atom to λko
IL, where

IL denotes the identity in R
L×L and λko

∈ R is a prede-

termined constant. A zero vector is used for the mean pa-

rameter µko
∈ R

L, since the distribution is defined over a

basis vector. Similarly, we let Λǫo
= λǫo

IL and µso
= 0,

where λǫo
∈ R. These simplifications allow for fast infer-

encing in our application without any noticeable degrada-

tion of the results. We further place non-informative gamma

hyper-priors over λso
and λǫo

, so that λs ∼ Γ(λs|co, do)
and λǫ ∼ Γ(λǫ|eo, fo), where Γ denotes the Gamma dis-

tribution and co, do, eo and fo are the hyper-parameters.

The model thus formed is completely conjugate, therefore

Bayesian inferencing can be performed over it with Gibbs

sampling using analytical expressions. We derive these ex-

pressions for the proposed approach and state the final sam-

pling equations below. Detailed derivations of the Gibbs

sampling equations can be found in the provided supple-

mentary material.

We denote the contribution of the kth dictionary atom ϕk

to yi as, yiϕk
= yi − Φ(zi ⊙ si) + ϕk(ziksik), and the

ℓ2 norm of a vector by ‖.‖2. Using these notations, we ob-

tain the following analytical expressions for the Gibbs sam-

pling process used in our approach:

Sample ϕk: from N (ϕk|µk, λ−1

k IL), where

λk = λko
+ λǫo

mn∑

i=1

(ziksik)2;µk =
λǫo

λk

mn∑

i=1

(ziksik)yiϕk

Sample zik: from Bern
(
zik|

ξπko

1−πko+ξπko

)
, where

ξ = exp
(
−

λǫo

2
(ϕT

kϕks2
ik − 2siky

T
iϕk

ϕk)
)

Sample sik: from N (sik|µs, λ
−1
s ), where

λs = λso
+ λǫo

z2
ikϕT

kϕk ; µs =
λǫo

λs

zikϕT
kyiϕk

Sample πk: from Beta(πk|a, b), where

a =
ao

K
+

mn∑

i=1

zik ; b =
bo(K − 1)

K
+ (mn) −

mn∑

i=1

zik

Sample λs: from Γ(λs|c, d), where

c =
Kmn

2
+ co ; d =

1

2

mn∑

i=1

||si||
2
2 + do

Sample λǫ: from Γ(λǫ|e, f), where

e =
Lmn

2
+ eo ; f =

1

2

mn∑

i=1

||yi − Φ(zi ⊙ si)||
2
2 + fo

As a result of Bayesian inferencing, we obtain sets of

posterior distributions over the model parameters. We are

interested in two of them. (a) The set of distributions over

the atoms of the dictionary, ℵ
def

= {N (ϕk|µk,Λ−1

k ) : k ∈
K} ⊂ R

L and (b) the set of distributions over the com-

ponents of the support indicator vectors ℑ
def

= {Bern(πk) :
k ∈ K} ⊂ R. Here, Bern(πk) is followed by the kth com-

ponents of all the support indicator vectors simultaneously,

i.e. ∀i ∈ {1, ...,mn}, zik ∼ Bern(πk). These sets are used

in the later stages of the proposed approach.

In the above model, we have placed Gaussian priors over

the dictionary atoms, enforcing our prior belief of relative

smoothness of the material spectra. Note that, the correct

value of |K| is also inferred at this stage. We refer to the

pioneering work by Paisley and Carin [23] for the theoret-

ical details in this regard. In our inferencing process, the

desired value of |K| manifests itself as the total number of

dictionary atoms for which πk 6= 0 after convergence. To

implement this, we start with K → ∞ and later drop the

dictionary atoms corresponding to πk = 0 during the sam-

pling process.

With the computed ℵ, we estimate Φ (stage 2 in Fig. 2)

by drawing multiple samples from the distributions in the

set and computing their respective means. It is also possible

to directly use the mean parameters of the inferred distribu-

tions as the estimates of the dictionary atoms, but the former

is preferred for robustness. Henceforth, we will consider

the dictionary, instead of the distributions over its atoms, as

the final outcome of the Bayesian dictionary learning pro-

cess. The transformed dictionary is simply computed as

Φ̂ = ΥΦ. Recall that, the matrix Υ relates the spectral

quantizations of the two imaging modalities under consid-

eration and it is known a priori.

4.2. Bayesian Sparse Coding

Once Φ̂ is known, we use it to compute the sparse codes

of Y. The intention is to obtain the codes of the high res-

olution image and use them with Φ to estimate T. Al-

though some popular strategies for sparse coding already

exist, e.g. Orthogonal Matching Pursuit [26] and Basis Pur-

suit [12], but their performance is inferior when used with

the Bayesian dictionaries learned using the Beta process.

There are two main reasons for that. (a) Atoms of the

Bayesian dictionaries are not constrained to ℓ2 unit norm.

(b) With these atoms, there is an associated set of Bernoulli

distributions which must not be contradicted by the under-

lying support of the sparse codes. In some cases, it may be

easy to modify an existing strategy to cater for (a), but it is

not straightforward to take care of (b) in these approaches.

We propose a simple, yet effective method for Bayesian

sparse coding that can be generically used with the dictio-

naries learned using the Beta process. The proposal is to fol-

low a procedure similar to the Bayesian dictionary learning,
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with three major differences. For a clear understanding, we

explain these differences as modifications to the inferenc-

ing process of the Bayesian dictionary learning, following

the same notational conventions as above.

1) Use N (ϕ̂k|µko
, λ−1

ko
Il) as the prior distribution over

the kth dictionary atom, where λko
→ ∞ and µko

= ϕ̂k.

Considering that Φ̂ is already a good estimate of the dic-

tionary2, this is an intuitive prior. It entails, ϕ̂k is sampled

from the following posterior distribution while inferencing:

Sample ϕ̂k: from N (ϕ̂k|µk, λ−1

k Il), where

λk = λko
+ λǫo

MN∑

i=1

(ziksik)2;

µk =
λǫo

λk

MN∑

i=1

(ziksik)yi bϕk
+

λko

λk

µko

In the above equations, λko
→ ∞ signifies λk ≈ λko

and

µk ≈ µko
. It further implies that we are likely to get simi-

lar samples against multiple draws from the distribution. In

other words, we can not only ignore to update the posterior

distributions over the dictionary atoms during the inferenc-

ing process, but also approximate them with a fixed matrix.

A sample from the kth posterior distribution is then the kth

column of this matrix. Hence, from the implementation per-

spective, Bayesian sparse coding directly uses the atoms of

Φ̂ as the samples from the posterior distributions.

2) Sample the support indicator vectors in accordance

with the Bernoulli distributions associated with the fixed

dictionary atoms. To implement this, while inferencing,

we fix the distributions over the support indicator vectors

according to ℑ. As shown in Fig. 2, we use the vector

π ∈ R
|K| for this purpose, which stores the parameters of

the distributions in the set ℑ. While sampling, we directly

use the kth component of π as πk. It is noteworthy that us-

ing π in coding Y also imposes the self-consistency of the

scene between the high resolution image Y and the hyper-

spectral image Yh.

Incorporating the above proposals in the Gibbs sampling

process and performing the inferencing can already result

in a reasonably accurate sparse representation of y over

Φ̂. However, a closer examination of the underlying proba-

bilistic settings reveals that a more accurate estimate of the

sparse codes is readily obtainable.

Lemma 4.1 With y ∈ R(Φ̂) (i.e. ∃α s.t. y = Φ̂α) and

|K| > l, the best estimate of the representation of y, in the

mean squared error sense3, is given by α̃opt = E
[
E[α|z]

]
,

where R(.) is the range operator, E[.] and E[.|.] are the

2This is true because bΦ is an exact transform of Φ, which in turn, is

computed with high confidence.
3The metric is chosen based on the existing literature in hyperspectral

image super resolution [18],[17],[2].

expectation and the conditional expectation operators, re-

spectively.

Proof: Let α̃ ∈ R
|K| be an estimate of the representation α

of y, over Φ̂. We can define the mean square error (MSE)

as the following:

MSE = E
[
||α̃ − α||22

]
(1)

In our settings, the components of a support indicator vector

z are independent draws from Bernoulli distributions. Let Z
be the set of all possible support indicator vectors in R

|K|,

i.e. |Z| = 2|K|. Thus, there is a non-negative probability

of selection P (z) associated with each z ∈ Z such that∑
z∈Z P (z)=1. Indeed, the probability mass function p(z)

depends on the vector π that assigns higher probabilities to

the vectors indexing more important dictionary atoms.

We can model the generation of α as a two step se-

quential process: 1) Random selection of z with probability

P (z). 2) Random selection of α according to a conditional

probability density function p(α|z). Here, the selection of

α implies the selection of the corresponding weight vector

s and then computing α = z ⊙ s. Under this perspective,

MSE can be re-written as:

MSE =
∑

z∈Z

P (z)E
[
||α̃ − α||22 | z

]
(2)

The conditional expectation in (2) can be written as:

E
[
||α̃ − α||22|z

]
= ||α̃||22 − 2α̃T

E[α|z] + E
[
||α||22|z

]
(3)

We can write the last term in (3) as the following:

E
[
||α||22|z

]
=

∥∥E[α|z]
∥∥2

2
+ E

[∥∥α − E[α|z]
∥∥2

2
|z

]
(4)

For brevity, let us denote the second term in (4) as Vz. By

combining (2)-(4) we get:

MSE =
∑

z∈Z

P (z)
∥∥α̃ − E[α|z]

∥∥2

2
+

∑

z∈Z

P (z)Vz (5)

= E
[∥∥α̃ − E[α|z]

∥∥2

2

]
+ E

[
Vz

]
(6)

Differentiating R.H.S. of (6) with respect to α̃ and equating

it to zero, we get α̃opt = E
[
E[α|z]

]
4, that minimizes the

mean squared error.

Notice that, with the aforementioned proposals incorpo-

rated in the sampling process, it is possible to independently

perform the inferencing multiple, say Q, times. This would

result in Q support indicator vectors zq and weight vectors

sq for y, where q ∈ {1, ...Q}.

Lemma 4.2 For Q→∞, 1

Q

Q∑
q=1

zq ⊙ sq = E
[
E[α|z]

]
.

4Detailed mathematical derivation of each step used in the proof is also

provided in the supplementary material.
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Proof: We only discuss an informal proof of Lemma 4.2.

The following statements are valid in our settings:

(a) ∃αi,αj s.t. (αi 6= αj)∧(αi = z⊙si)∧(αj = z⊙sj)

(b) ∃zi, zj s.t. (zi 6= zj) ∧ (α = zi ⊙ si) ∧ (α = zj ⊙ sj)

where ∧ denotes the logical and; αi and αj are instances

of two distinct solutions of the underdetermined system

y = Φ̂α. In the above statements, (a) refers to the possi-

bility of distinct representations with the same support and

(b) refers to the existence of distinct support indicator vec-

tors for a single representation. Validity of these conditions

can be easily verified by noticing that z and s are allowed

to have zero components. For a given inferencing process,

the final computed vectors z and s are drawn according to

valid probability distributions. Thus, (a) and (b) entail that

the mean of Q independently computed representations, is

equivalent to E
[
E[α|z]

]
when Q→∞.

3) In the light of Lemma 4.1 and 4.2, we propose to in-

dependently repeat the inferencing process Q times, where

Q is a large number (e.g. 100), and finally compute the

code matrix Ã (in Fig. 2) as Ã = 1

Q

∑Q

q=1
Zq ⊙ Sq,

where Ã has α̃i∈{1,...,MN} as its columns. The matrices

Zq,Sq ∈ R
|K|×MN are the support matrix and the weight

matrix, respectively, formed by arranging the support indi-

cator vectors and the weight vectors as their columns. Note

that, the finally computed codes Ã may by dense as com-

pared to individual Zq.

With the estimated Ã and the dictionary Φ, we com-

pute the target super resolution image T by re-arranging

the columns of T = ΦÃ (stage 4 in Fig. 2) into the pixels

of hyperspectral image.

5. Experimental Evaluation

The proposed approach has been thoroughly evaluated

using ground based imagery as well as remotely sensed

data. For the former, we performed exhaustive experiments

on two public databases, namely, the CAVE database [30]

and the Harvard database [9]. CAVE comprises 32 hy-

perspectral images of everyday objects with dimensions

512 × 512 × 31, where 31 represents the spectral dimen-

sion. The spectral images are in the wavelength range 400 -

700nm, sampled at a regular interval of 10nm. The Harvard

database consists of 50 images of indoor and outdoor scenes

with dimensions 1392 × 1040 × 31. The spectral samples

are taken at every 10nm in the range 420 - 720nm. For the

remote sensing data, we chose a 512 × 512 × 224 hyper-

spectral image5 acquired by the NASA’s Airborne Visible

Infrared Imaging Spectrometer (AVIRIS) [15]. This image

has been acquired over the Cuprite mines in Nevada, in the

wavelength range 400 - 2500nm with 10nm sampling in-

terval. We followed the experimental protocol of [2] and

[18]. For benchmarking, we compared the results with the

5http://aviris.jpl.nasa.gov/data/free data.html.

existing best reported results in the literature under the same

protocol, unless the code was made public by the authors.

In the latter case, we performed experiments using the pro-

vided code and the optimized parameter values. The re-

ported results are in the range of 8 bit images.

In our experiments, we consider the images from the

databases as the ground truth. A low resolution hyperspec-

tral image Yh is created by averaging the ground truth over

32× 32 spatially disjoint blocks. For the Harvard database,

1024 × 1024 × 31 image patches were cropped from the

top left corner of the images, to make the spatial dimen-

sions of the ground truth multiples of 32. For the ground

based imagery, we assume the high resolution image Y to

be an RGB image of the same scene. We simulate this im-

age by integrating the ground truth over its spectral dimen-

sion using the spectral response of Nikon D7006. For the

remote sensing data, we consider Y to be a multispectral

image. Following [2], we create this image by directly se-

lecting six spectral images from the ground truth against

the wavelengths 480, 560, 660, 830, 1650 and 2220 nm.

Thus, in this case, Υ is a 6 × 224 binary matrix that se-

lects the corresponding rows of Φ. The mentioned wave-

lengths correspond to the visible and mid-infrared channels

of USGS/NASA Landsat 7 satellite.

We compare our results with the recently proposed ap-

proaches, namely, the Matrix Factorization based method

(MF) [18], the Spatial Spectral Fusion Model (SSFM) [17],

the ADMM based approach [29], the Coupled Matrix Fac-

torization method (CMF) [31] and the spatio-spectral sparse

representation approach, GSOMP [2]. These matrix factor-

ization based approaches constitute the state of the art in

this area [2]. In order to show the performance difference

between these methods and the other approaches mentioned

in Section 2, we also report some results of the Component

Substitution Method (CSM) [1], taken directly from [18].

The top half of Table 1 shows results on seven different

images from the CAVE database. We chose these images

because they are commonly used for benchmarking in the

existing literature [2],[29],[18]. The table shows the root

mean squared error (RMSE) of the reconstructed super res-

olution images. The approaches highlighted in red addi-

tionally require the knowledge of the down-sampling matrix

that converts the ground truth to the acquired hyperspectral

image. Hence, they are of less practical value [2]. As can be

seen, our approach outperforms most of the existing meth-

ods by a considerable margin on all the images. Only the re-

sults of GSOMP are comparable to our method. However,

GSOMP operates under the assumption that nearby pixels

in the target image are spectrally similar. The assumption is

enforced with the help of two extra algorithm parameters.

Fine tuning these parameters is often non-trivial, as many

6The response and integration limits can be found at

http://www.maxmax.com/spectral response.htm
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Table 1. Benchmarking of the proposed approach: The RMSE val-

ues are in the range of 8 bit images. The best results are shown in

bold. The approaches highlighted in red additionally require the

knowledge of the spatial transform between the input images.

CAVE database [30]

Method BeadsSpoolsPaintingBalloonsPhotos CD Cloth

CSM [1] 28.5 - 12.2 13.9 13.1 13.3 -

MF [18] 8.2 8.4 4.4 3.0 3.3 8.2 6.1

SSFM [17] 9.2 6.1 4.3 - 3.7 - 10.2

ADMM [29] 6.1 5.3 6.7 2.1 3.4 6.5 9.5

CMF [31] 6.6 15.0 26.0 5.5 11.0 11.0 20.0

GSOMP [2] 6.1 5.0 4.0 2.3 2.2 7.5 4.0

Proposed 5.4 4.6 1.9 2.1 1.6 5.3 4.0

Harvard database [9]

Img 1Img b5 Img b8 Img d4 Img d7Img h2Img h3

MF [18] 3.9 2.8 6.9 3.6 3.9 3.7 2.1

SSFM [17] 4.3 2.6 7.6 4.0 4.0 4.1 2.3

GSOMP [2] 1.2 0.9 5.9 2.4 2.1 1.0 0.5

Proposed 1.1 0.9 4.3 0.5 0.8 0.7 0.5

Table 2. Exhaustive experiment results: The means and the stan-

dard deviations of the RMSE values are computed over the com-

plete databases.

CAVE database [30] Harvard database [9]

Method Mean ± Std. Dev Mean ± Std. Dev

GSOMP [2] 3.66 ± 1.51 2.84 ± 2.24

Proposed 3.06 ± 1.12 1.74 ± 1.49

of the nearby pixels in an image can also have dissimilar

spectra. There is no provision for automatic adjustment of

the parameter values for such cases. Therefore, an image

reconstructed by GSOMP can often suffer from spatial arti-

facts. For instance, even though the parameters of GSOMP

are optimized specifically for the sample image in Fig. 3,

the spatial artifacts are still visible. The figure also com-

pares the RMSE of our approach with that of GSOMP, as

a function of the spectral bands of the image. The RMSE

curve is lower and smoother for the proposed approach.

The results on the images from the Harvard database are

shown in the bottom half of Table 1. These results also favor

our approach. Results of ADMM and CMF have never been

reported for the Harvard database. In Table 2, we report the

means and the standard deviations of the RMSE values of

the proposed approach over the complete databases. The re-

sults are compared with GSOMP using the public code pro-

vided by the authors and the optimal parameter settings for

each database, as mentioned in [2]. Fair comparison with

other approaches is not possible because of the unavailabil-

ity of the public codes and results on the full databases.

However, based on Table 1 and the mean RMSE values

of 4.24 ± 2.08 and 4.98 ± 1.97 for ADMM and MF, re-

spectively, reported by Wycoff et al. [29], on 20 images

Figure 3. Comparison of the proposed approach with GSOMP [2]

on image ‘Spools’ (CAVE database) [30].

from the CAVE database, we can safely conjecture that the

other methods are unlikely to outperform our approach on

the full databases. Table 2 clearly indicates the consistent

performance of the proposed approach. For our approach,

results on the individual images of the complete databases

can be found in the supplementary material of the paper,

where we also provide the Matlab code/demo for the pro-

posed approach (that will eventually be made public).

For qualitative analysis, Fig. 4 shows spectral samples

from two reconstructed super resolution hyperspectral im-

ages, against wavelengths 460, 540 and 620nm. The spec-

tral images are shown along the ground truth and their ab-

solute difference with the ground truth. Spectral samples

of the input 16 × 16 hyperspectral images are also shown.

Successful hyperspectral image super resolution is clearly

evident from the images. Further qualitative results on the

images mentioned in Table 1 are given in the supplemen-

tary material of the paper. For the remote sensing image

acquired by AVIRIS, the RMSE value of the proposed ap-

proach is 1.63. This is also lower than the previously re-

ported values of 2.14, 3.06 and 3.11 for GSOMP, MF and

SSFM respectively, in [2]. For the AVIRIS image, the spec-

tral samples of the reconstructed super resolution image at

460, 540, 620 and 1300 nm are shown in Fig. 5.

6. Discussion

In the above experiments, we initialized the Bayesian

dictionary learning stage as follows. The parameters

ao, bo, co, do, eo and fo were set to 10−6. From the sam-

pling equations in Section 4.1, it is easy to see that these

values do not influence the posterior distributions much, and

other such small values would yield similar results. We ini-

tialized πko
= 0.5, ∀ k, to give the initial Bernoulli distri-

butions the largest variance [5]. We initialized the Gibbs

sampling process with K = 50 for all the images. This

value is based on our prior belief that the total number of

the materials in a given scene is generally less than 50. The

final value of |K| was inferred by the learning process itself,

which ranged over 10 to 33 for different images. We initial-

ized λǫo
to the precision of the pixels in Yh and randomly

chose λso
= 1. Following [33], λko

was set to L. The

parameter setting was kept unchanged for all the datasets
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Figure 4. Super resolution image reconstruction at 460, 540 and 620 nm: The images include the low resolution spectral image, ground

truth, reconstructed spectral image and the absolute difference between the ground truth and the reconstructed spectral image. (Left)

‘Spools’ from the CAVE database [30]. (Right) ‘Img 1’ form the Harvard database [9].

without further fine tuning. We ran fifty thousand Gibbs

sampling iterations from which the last 100 were used to

sample the distributions to compute Φ. On average, this

process took around 3 minutes for the CAVE images and

around 8 minutes for the Harvard images. For the AVIRIS

data, this time was 12.53 minutes. The timing is for Matlab

implementation on an Intel Core i7 CPU at 3.6 GHz with 8

GB RAM. For the Bayesian sparse coding stage, we again

used 10−6 as the initial value for the parameters ao to fo.

We respectively initialized λso
and λǫo

to the final values of

λs and λǫ of the dictionary learning stage. We ran the infer-

encing process Q = 128 times with 100 iterations in each

run. It is worth noticing that, in the proposed sparse coding

strategy, it is possible to run the inferencing processes inde-

pendent of each other. This makes the sparse coding stage

naturally suitable for multi-core processing. On average, a

single sampling process required around 1.75 minutes for

a CAVE image and approximately 7 minutes for a Harvard

image. For the AVIRIS image, this time was 11.23 minutes.

The proposed approach outperforms the existing meth-

ods on ground based imagery as well as remotely sensed

data, without requiring explicit parameter tuning. This dis-

tinctive characteristic of the proposed approach comes from

exploiting the non-parametric Bayesian framework.

7. Conclusion

We proposed a Bayesian sparse representation based ap-

proach for hyperspectral image super resolution. Using the

non-parametric Bayesian dictionary learning, the proposed

approach learns distributions for the scene spectra and their

proportions in the image. Later, this information is used to

sparse code a high resolution image (e.g. RGB) of the same

scene. For that purpose, we proposed a Bayesian sparse

coding method that can be generically used with the dic-

Figure 5. Spectral images at 460, 540, 620 and 1300 nm for the

AVIRIS [15] data. Reconstructed spectral images (512 × 512)

are shown along their absolute difference with the ground truth

(512×512). The low resolution images (16×16) are also shown.

tionaries learned using the Beta process. Theoretical anal-

ysis is provided to show the effectiveness of the method.

We used the learned sparse codes with the image spectra

to construct the super resolution hyperspectral image. Ex-

haustive experiments on three public data sets show that the

proposed approach outperforms the existing state of the art.
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