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Abstract

Selecting a reduced set of relevant and non-redundant
features for supervised classification problems is a chal-
lenging task. We propose a gradient based feature selec-
tion method which can search the feature space efficiently
and select a reduced set of representative features. We test
our proposed algorithm on five small and medium sized pat-
tern classification datasets as well as two large 3D face
datasets for computer vision applications. Comparison
with the state of the art wrapper and filter methods shows
that our proposed technique yields better classification re-
sults in lesser number of evaluations of the target classifier.
The feature subset selected by our algorithm is representa-
tive of the classes in the data and has the least variation in
classification accuracy.

1. Introduction
Feature selection, the process of selecting a subset of

relevant and non-redundant features, is critical to develop-
ing robust, supervised or unsupervised, machine learning
models. Supervised learning models are typically presented
with a set of training observations X = {x1, ...,xM}
(X ∈ RN×M ), where N observations are characterized
by M vectors of features (or attributes) and class labels c.
The problem of feature selection, thus, is to learn a reduced
space F ∈ RN×m that can best classify a future unseen ob-
servations q into one of the classes c.

Given a set of observations comprising of hundreds or
thousands of features it is possible that a large number of
features are either irrelevant or redundant with respect to
the set of classes and hence are less likely to classify a test
instance correctly [31, 32]. Moreover, even with a subset of
“good” features, it is not necessary that their combination
would lead to a good classification performance, meaning
thereby, that the m best features may not be the best m fea-
tures [2, 13].

For decades now, feature selection has been a dynamic

field of research in machine learning [19,27], statistics [11],
data mining [4, 14] and statistical pattern recognition [21].
It has found success in many applications like image re-
trieval [8, 29], genomic microarray analysis [31, 34], intru-
sion detection [17], text categorization [9,32] and customer
relationship management [22]. Feature selection is known
to have many advantages like alleviation of the curse of di-
mensionality to reduce the computational cost, reduction of
irrelevant and redundant features to improve the classifica-
tion accuracy and selection of features that have a physical
interpretation to help identify and monitor the target dis-
eases or function types [24].

Although there seems to be more focus on dimension-
ality reduction techniques in the field of computer vision,
feature selection has seen vast applications in this field. Re-
searchers have effectively used feature selection methods in
problems like land use classification based on satellite im-
ages [12], object tracking [28], pose classification [23] etc.

Approaches to feature selection can be divided into two
main categories: filter methods and wrapper methods [15,
16]. Whatever the approach, the main objective is to find
features that are relevant to the set of class labels and at
the same time have less mutual redundancy. Filter methods
employ statistical techniques and make use of the intrinsic
information within the features to attain this objective while
wrappers target some classification algorithm for this task.

Given two feature vectors {xi, xj} from the set of ob-
servations X and a class c from the set of classesC, Γ(xi, c)
is defined as the statistical relevance of the feature xi with
class c, while Γ(xi, xj) is defined as the redundancy be-
tween the two features xi and xj . In filter methods, the
function Γ can take on one of the many statistical param-
eters like the mutual information [25], correlation [10] or
standard deviation [20].

The Fast Correlation Based Filter (FCBF), proposed by
Yu et al. [34, 35], removes irrelevant and redundant fea-
tures. Features with a symmetrical uncertainty according
to their class below a given threshold are removed because
they are considered as irrelevant. Additionally, only fea-
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tures that do not have any approximate Markov blanket
in the current set of remaining features are kept in order
to reduce redundancy. Similarly, Minimal-Redundancy-
Maximal-Relevance (mRMR), a filter based approach pro-
posed by Peng et al. [6, 25], performs three tasks: (1) it
looks for features with maximum relevance using the in-
formation content within each feature (2) next it looks for
features with minimum redundancy using the mutual infor-
mation between the features (3) finally, the algorithm si-
multaneously maximizes the relevance and minimizes the
redundancy by either taking their difference (Mutual Infor-
mation Difference (MID)) or the quotient (Mutual Informa-
tion Quotient (MIQ)). The authors take I(x, y) as the mu-
tual information which is derived from information theory.

Contrary to the filter methods, wrappers use a target clas-
sification algorithm to select a subset of features. Training
data is used to train a classifier and learn a subset of rel-
evant and non-redundant features. This learnt classifier is
then employed to classify a query instance. However, this
method is computationally very expensive and the success
in obtaining high quality features depends on the number of
feature subsets that are tried in the training phase to search
for the best feature subset. Typically the total number of
possible subsets of M features is given by 2M − 1. To bal-
ance the tradeoff between classification accuracy and com-
putational cost, different search strategies such as complete,
heuristic, and random search have been proposed [5]. A
complete search, often known as Brute Force (BF), evalu-
ates all possible feature subsets to select the one that gives
best results. Hill Climbing Forward Search (HCFS) algo-
rithm, proposed by Kohavi et al. [15], first looks for the best
feature from within the M features and adds it to the se-
lected feature set F. It then iteratively keeps adding a single
features to F until the addition of a feature does not improve
the accuracy. The Best-First Forward Selection (BFFS) [15]
wrapper is similar to HCFS algorithm, except that it does
not stop if a new feature from the feature set M reduces
the classification accuracy. Instead it discards that feature
and restarts the search. The algorithm is stopped if classi-
fication accuracy has not improved or if no new feature has
been added to the set F in last k iterations. Both HCFS and
BFFS are greedy algorithms and do not guarantee to find an
optimal feature subset.

Filter methods do not consider the target classification al-
gorithm and hence either suffer from the classifier-specific
issues of that algorithm or do not benefit from its advan-
tages. The reduced feature subset selected by such methods
remains the same regardless of the type of learning algo-
rithm used. Furthermore, the feature subset selected by fil-
ter methods are often refined using the wrapper approach.
In contrast, while the wrapper methods evaluate the actual
target classifier, they suffer from high computational com-
plexity. Even the greedy sequential search which reduces

Table 1. List of symbols.
Symbols Desscription
XN×M Feature matrix with N observations and M features

Ωi Feature matrix in ith iteration (i = 1, .., k)
Si Feature subsets of Ω (i = 1, ..,M )
∇(.) Application of a classifier (e.g. LDA, SVM)
Λi Classification result by applying∇(.) to Si

γi Gradient between Λi+1 amd Λi (i = 1, ..,M − 1)
Ri Maximum Λ in each iteration (i = 1, .., k)

FN×m Required reduced feature space with m features

the search space from O(2M − 1) to O(M2) can become
very inefficient for high-dimensional data.

We propose a novel search method for forward selec-
tion wrapper approach in order to select more representative
physically interpretable features. A gradient based feature
selection algorithm is proposed that is able to search the fea-
ture space more efficiently and effectively. While reducing
the number of evaluations of the target learning algorithm
and the number of representative features, our proposed ap-
proach also results in high accuracy. We evaluate our pro-
posed algorithm on seven public datasets and compare the
results with three filter and three wrapper feature selection
methods. We show that compared to the wrapper methods,
our algorithm yields better classification accuracy with a re-
duced set of features and in case of filter methods it outper-
forms them in terms of classification accuracy and number
of features selected.

2. Proposed algorithm

An overview of our proposed algorithm is given in Fig-
ure 1. Given a feature matrix X ∈ RN×M , with N ob-
servations and M features, we apply the classifier ∇(.) to
classify the features xi using one feature at a time. This
is the first step and is performed only once. For huge di-
mensional datasets, in the interest of reducing the compu-
tational cost, it can be replaced by obtaining the features
using a filter approach. The features are now arranged in
descending order of their classification accuracy and the
feature matrix Ω1 = {S1, ...,SM} is obtained such that

Figure 1. An overview of our Gradient based Efficient Feature Se-
lection algorithm (GEFS).
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Figure 2. A graphical description of our proposed gradient based feature selection algorithm. (a) The first step of classifying the individual
features. (b-e) Successive iterations of classifying and reordering the features. Only subsets with features in blue are evaluated at each
iteration (f) Plot of maximum accuracy in each iteration. Notice that Ri will converge after the last iteration.

S1 ⊂ S2 ⊂ ...SM−1 ⊂ SM . Once again the classi-
fier ∇(.) is applied to these feature subsets to obtain the
classification accuracy Λi of each subset. The maximum
accuracy of each iteration Ri = max(Λi, ..,ΛM ) is also
recorded as a heuristic to stop the search. Starting from Λ1

we find the gradient γ of the classification result of every
two consecutive subsets in the feature matrix Ωi such that
γi = Λi+1−Λi. Next we rearrange Ωi such that all features
that contributed to a positive gradient are moved up while
those that resulted in a negative gradient are moved down
in the search order. In this way we obtain Ω2 for the next
iteration and the process continues iteratively. As the pro-
cess continues the search starts stabilizing and some of the
features do not change their order since the Λi associated
with their subsets stays the same over successive iterations.
Such features are excluded from further evaluation in order
to reduce the computational cost.

The feature selection search stops when Ri, the max-
imum accuracy of all subsets in each iteration does not
change for k consecutive iterations. Notice that this is one
of the heuristics used to stop the BFFS in [15]. This state

can be reached in two cases; (1) The order of features in the
feature matrix Ωi does not change even after rearranging
based on the gradients γi. (2) The maximum accuracy Ri

does not change even after rearranging the features in Ωi.
At convergence the feature subset with the maximum Λ is
returned as the reduced most relevant non redundant feature
set F.

The proposed algorithm applied to a hypothetical feature
set is graphically illustrated in Figure 2. The first step of
applying ∇(.) to classify individual features xi is shown in
Figure 2(a). Notice that none of the features has a classifi-
cation accuracy of more than 70%. Figures 2(b-e) show the
details of the iterative procedure. The features after being
sorted in the order of their accuracy are arranged to form
subsets Si. These subsets are classified and the result Λi is
shown in (a). Gradient γi is calculated for consecutive Λi

and the features are once again reordered. The output se-
quence of one iteration becomes the input of the next. As
the process starts stabilizing, notice that the feature subsets
in the beginning and at the tail are excluded from further
evaluation. These are shown in red colour. Finally, in (e)
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there is no change in the order of features even after rear-
ranging based on the gradient γi. The maximum accuracy
in each iteration Ri is shown in Figure 2(f). Ri will con-
verge after the fourth iteration and hence the feature selec-
tion search stops after k iterations. The feature subset S4 of
the fourth iteration, having the highest classification accu-
racy Λ4 is returned as the resultant feature set F.

3. Evaluation
3.1. Datasets and algorithms for comparison

We have tested our proposed algorithm on two large,
three medium and two small datasets. Details of these
datasets are given below while a summary is presented in
Table 2.

• Bankruptcy data from StatLib [30] and Vertebral Col-
umn (VerCol) datasets from UCI machine learning
repository [1] comprise the medium sized datasets.

• Breast Tissue, Glass Identification and Wine datasets
from UCI machine learning repository [1] are amongst
the small size datasets.

• Face Recognition Grand Challenge ver 2 (FRGC) [26]
and Binghamton University 3D Facial Expression
(BU-3DFE) [33] are the two large datasets which have
strong applications in computer vision. FRGC v2
dataset contains 4007 3D face scans of 466 individ-
uals. We use 182 distances between landmarks that
have been automatically detected by Creusot et al. [3]
as features to perform gender classification. BU-3DFE
face database consists of 2500 scans of 100 subjects.
There are 25 scans of each subject in seven differ-
ent expressions. The dataset comes with 83 feature
points as ground truth. We select 20 landmarks criti-
cal to gender classification and extract 49 distances be-
tween them as features.These datasets have been used

Figure 3. Examples of some of the distances extracted as features
for gender classification on FRGC dataset.

Table 2. Summary of datasets
Name Features Instances Classes
FRGC v2 182 4007 2
BU-3DFE 49 2500 2
Bankruptcy 5 50 2
VerCol 6 310 2
Breast Tissue 9 106 4
Glass Identification 9 214 7
Wine 13 178 3

to evaluate the performance of our proposed technique
in gender classification, an application related to com-
puter vision. Figure. 3 shows some of the features used
for gender classification on FRGC dataset.

Based on the technique used to search the feature space
we name our proposed algorithm Gradient based Efficient
Feature Selection (GEFS). On small and medium sized
datasets we compare our proposed algorithm with three
wrapper and three filter methods apart from using all fea-
tures. Wrappers include the Brute Force (BF), Hill Climb-
ing Forward Search (HCFS) and Best-First Forward Selec-
tion (BFFS) [15] while filter methods are Fast Correlation
Based Filter (FCBF) [35], Minimal-Redundancy-Maximal-
Relevance (mRMR) [25] and TTest [18]. On the large
datasets it is not possible to use the Brute Force (BF) since
the search space exceeds 1015 subsets.

3.2. Evaluation criteria

There is no fixed criteria in the literature to evaluate
the quality of a feature selection algorithm. The most
commonly used metrics are Mean Classification Accuracy
(MCA) yielded by the output reduced feature set and the
number of evaluations of the target algorithm performed
to select these representative features. Both, FCBF and
MRMR have a parameter to control the number of reduced
features selected by these algorithms [25, 35]. For a fair
comparison, we select all features and test them using j
features at a time in the order in which the feature selec-
tion algorithm has selected them. It is evident that for filter
methods the number of evaluations is equal to the number
of features in the data. Amongst the wrapper methods, only
BFFS algorithm has a parameter of k iteration as a heuristic
to stop the feature space search. Again for a fair compar-
ison we set k = 3 for the BFFS as well as our proposed
algorithm. The target algorithm used to evaluate all fea-
ture selection methods is the Linear Discriminant Classifier
(LDA) [7]. We perform all evaluations with 10-fold cross
validation.

4. Results and Analysis
Comparative results are shown in Figure 4. The MCA of

Brute Force method is the gold standard as it tests the com-
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Figure 4. Comparison of our proposed method with seven other methods using (a) Mean Classification Accuracy of LDA (b) standard
devaition of accuracies over 10-folds and (c) number of features finally selected, as criteria. (d) Comparison with wrapper approaches over
the number of evaluations of LDA. Notice that for small and medium datasets, the performance of our proposed technique is equal to that
of Brute Force.

plete feature space. Figure.4(a) shows that our proposed
algorithm GEFS performs at par with BF. The classifica-
tion results are consistently better than all other feature se-
lection algorithms mentioned. MCA of all algorithms for
glass dataset is approximately 66% and shown as an out-
lier in the graph. Note that Brute Force classification could
not be performed on BU-3DFE and FRGC datasets. The
MCA included in the analysis was set to 100% for fairness
in comparison. Figure.4(b) shows the standard deviation of
the classification accuracies. It is evident from the graph
that along with improved accuracy our classification results
also have less standard deviation over 10-folds. The final
number of features selected is of high interest for practi-
cal applications. For example in gene phenotype classifica-
tion, when a small number of genes are selected, their bi-
ological relationship with the target diseases is more easily

identified [6]. Figure.4(c) shows the final number of fea-
turesm selected by each algorithm as well as the total num-
ber of features available in the small and medium datasets.
The only algorithm that selects lesser number of features is
HCBF, but it does so at the cost of accuracy. Being a greedy
algorithm it terminates when there is no improvement in the
results, but the feature subset selected is not necessarily the
set of representative features.

Finally the number of evaluations of the target algorithm
are depicted in Figure.4 (d). For all filter methods the num-
ber of evaluations is equal to the number of features in the
dataset and hence we did not find it prudent to include these
algorithms on this particular comparison. It is obvious from
the figure that our proposed algorithm, GEFS, requires less
number of evaluations of the target algorithm. It is thus
an evidence of efficient search in the feature space to se-
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Table 3. A comparison between our proposed method and the state of art on two evaluation criteria for each dataset. Note that we have
not mentioned the target evaluation runs of filter methods as it is understood that this number is equal to the total number of features in the
dataset. ? Stands for all features, ?? and # The exact figures are 56.2× 1013 and 61.3× 1053 respectively.

Datasets Mean Classification Accuracy Number of Evaluations
BF All Fe? HCFS BFFS GEFS MRMR FCBF Ttest BF HCFS BFFS GEFS

Bankruptcy 91.3 85.7 91.3 91.3 91.3 91.3 91.3 91.3 31 14 15 10
VerCol 83.9 83.2 82.9 83.9 83.9 83.2 82.9 83.2 63 18 21 9
Breast 90.7 86.8 90.7 90.7 90.7 87.9 86.7 89.5 511 24 30 18
Glass 66.6 65.2 65.2 65.7 65.7 65.2 63.8 66.1 511 42 45 27
Wine 99.5 99.5 99.5 99.5 99.5 99.5 98.9 99.5 8191 85 88 35

BU-3DFE 100.0 86.7 91.7 95.9 99.6 89.8 86.7 86.7 56.2?? 522 630 274
FRGC 100.0 86.2 85.1 87.0 98.6 89.6 80.9 86.5 61.3# 1428 2958 1562

lect an optimal feature set. Note that we did not perform
Brute Force evaluation on BU-3DFE and FRGC datasets.
The number of evaluations given here is the size of the
total search space for feature selection for these datasets,
i.e.O(2M − 1).

Table 3 gives a detailed picture of comparative results.
As mentioned before, we do not compare our proposed al-
gorithm with filter methods on the criteria of number of
evaluations of LDA. For Bankruptcy dataset the perfor-
mance of all algorithms is at par with each other, however,
only GEFS achieves this accuracy in less number of LDA
evaluations. The striking advantage of GEFS is evident as
the number of features increase. With medium and large
datasets it is not feasible to run the Brute Force technique.
HCFS gives suboptimal classification accuracy as it is a
greedy algorithm. BFFS yields better accuracy than HCFS
at the cost of increased evaluations of the target classifica-
tion algorithm. Our proposed method, GEFS gives better
accuracy results with lesser number of LDA evaluations.

5. Conclusion
We have presented a gradient based feature selection al-

gorithm (GEFS) that uses a wrapper technique to select an
optimal feature subset. We also showed that our proposed
approach is efficient in searching the feature space and can
converge in less number of iterations. The proposed al-
gorithm was tested on small and medium as well as large
datasets which have applications in computer vision. Re-
sults were compared with state of the art wrapper and filter
approaches. Our analysis shows that GEFS yields better ac-
curacy in lesser number of evaluations of the target classifi-
cation algorithm. It selects a reduced feature set which can
make it easy for researchers and analysts to identify their
relationship with the target class.
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