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Abstract. Text extraction from videos is an emerging research field
in the document analysis community. We propose a simple Convolu-
tional Recurrent Neural Network to perform text recognition on both
Arabic and Urdu scripts. We use a large variety of data augmentation
techniques to generalize the model and prevent over-fitting. We also use
a slightly improved loss function that helps the model converge faster.
Using the proposed method we achieved 99.73% CRR, 88.37% WRR and
89.92% LRR on the Urdu Ticker Text dataset and 96.82% CRR, 90.41%
WRR and 76.78% LRR on the AcTiVComp20 dataset. The proposed
method has significantly outperformed Google Vision API on both of
the datasets.
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1 Introduction

Text recognition in its pure form - recognizing text from scanned documents - has
been transformed in modern times. Smart phones have introduced a new captur-
ing mechanism with additional challenges like page warps and view translations.
Moreover, scene text recognition is a relatively new domain in text recognition
that deals with text recognition in natural scenes and images. The text may
occur in any shape, style or orientation, thereby increasing the text recognition
challenge multi folds. An extension of scene text recognition is the emerging field
of video text recognition. A video frame has additional challenges such as frame
rate estimation, unique text determination, etc. in addition to the challenges of
natural scenes.

Latin-based scripts receive most of the attention in both academia and indus-
try. Remarkable results in Latin text recognition for both printed as well as
handwritten text have been achieved. There has been very little or non-existent
research carried out for Arabic scripts, including Arabic, Urdu, Persian, etc.
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Arabic and the derived scripts pose several additional challenges for reliable
recognition such as joined character, contextual shape change, diagonal writing
flow (in case of Urdu Nastaleeq script) are some of these challenges.

The text recognition in video sequences has several important applications in
the real world. News classification (sports, entertainment, current affairs, etc.)
and coverage, Analytic dashboards highlighting the insights gained from entity
extraction and news monitoring (identification of banned content) are some of
the widely used scenarios of video text recognition. News channels use these
applications to not only monitor their own transmission but also to keep an eye
on their competition.

In contrast to text recognition from a scanned document, video text recog-
nition poses several complex challenges. We need to extract individual frames
from the video stream and apply text detection and recognition methods to get
the text content. In video streams, the transition from one frame to another can
cause some distortion that can be troublesome for text detection and recogni-
tion. We face this issue in NEWS channels. Static tickers fade in and out of the
frame and in-between these transition models do not perform well. Distortion
in scrolling tickers can cause a problem in text recognition. In video streams,
we also need to extract unique instances of the text. We do so by keeping the
track of position and duration of a text shown in the video stream. Text is video
streams might also be in a different font, size or style. So in general, video text
recognition is more challenging than documents.

The Urdu language is the national language of Pakistan. It is an Indo-Aryan
language and shares similar phonology and syntax with the Hindi language;
however, it is written in Arbic-like script. It has more than 170 million speakers.
Urdu is mostly written in Nastaleeq script. Nastaleeq script was developed during
the Persian region in the 14" and 15" centuries. The Urdu language has 37
unique alphabets. Alphabets are not written individually but are joined together
to form ligatures.

The Arabic language is a universal language and the official language of 25
countries. It has over 300 million speakers. There are different writing styles for
Arabic scripts. But it is mostly written in Naskh script. It first emerged in the
15t to 4*" centuries CE. Similar to Urdu language, the Arabic alphabets are not
written individually but are joined together to form ligatures.

In this paper, we focus on video text recognition in Arabic and Urdu that
applies to natural images, videos and live streams. We pose the video text recog-
nition as a sequence recognition problem. The problem can be described as con-
verting an input image to a sequence of characters that represent text written in
that image. It is also known as Image-based sequence recognition. Convolutional
Neural Networks are excellent tools for extracting visual features from images.
These visual features may represent different structures and shapes. In our case,
these could be parts of letters, numbers or special characters. But these visual
features alone are not enough to recognize the text written inside the image.
We need to translate the sequence of visual features into character probability
scores. Recurrent Neural Networks (RNNs) are excellent in sequence-to-sequence
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translation. So using CNNs as visual feature extractors and RNNs as sequence-
to-sequence translation we can effectively model our text recognition technique.
We trained an end-to-end Convolutional Recurrent Neural Network (CRNN) to
recognize Arabic and Urdu video text.

We test our proposed solution on two different datasets. The first dataset
is the our own developed NUST-Urdu Ticker Text (NUST-UTT) dataset. It
contains images of static and scrolling ticker text from different Urdu channels.
The second dataset is the AcTiVComp20 dataset [1]. It also consists of cropped
ticker text from different Arabic channels. We calculated Character Recognition
Rate (CRR), Word Recognition Rate (WRR) and Line Recognition Rate (LRR)
on each dataset, with and without spaces. We achieved CRR, WRR and LRR
of 99.73%, 88.37% and 89.92% on the Ticker Text dataset and 96.82%, 90.41%
and 76.78% on the AcTiVComp20 dataset.

The remaining of the paper is organized as follow. The Sect.2 provides an
overview of related work in the field of video text recognition, Sect.3 provides
the details of the proposed approach, Sect.4 describes the dataset and outline
the performed experiments. Section5 details the results obtained and Sect.6
concludes the paper with future directions.

2 Related Work

Text recognition is an old and well-researched field. But it is mainly researched
in English or Chinese [15]. The field is wide-open for other languages. One
of the main hurdles is the availability of data. But it is possible to gener-
ate printed text synthetically using different techniques. Researchers have tried
different approaches for text recognition. These methods can be divided into
segmentation-based techniques and non-segmentation-based techniques.

Older methods use a segmentation-based approach. These methods focus on
isolated character or word recognition and recognizing them individually, which
is possible in English and Chinese [11,20]. This sounds logical but it may become
difficult when the characters are overlapping especially in handwriting recogni-
tion. Also, it is not easy to isolate each character in the languages Urdu as well
as Arabic text. Another approach is to isolate ligatures instead of individual
characters [3,4]. This approach works well for Urdu and Arabic text [13]. But
this requires a lot of data. The technique becomes ineffective when the ligature
count becomes very large. To classify each ligature there should be enough data
samples in the dataset. In the NUST-UTT dataset alone there are 5,450 unique
ligatures. Some other techniques also try to achieve word-level recognition but
suffer the same problem [12]. The total number of classes grows so much, it
becomes difficult to classify. Techniques that perform an isolated character, lig-
ature, or word recognition are not effective for Urdu and Arabic scripts.

Modern techniques use a non-segmentation-based approach. We use a neural
network to recognize the whole sequence instead of recognizing individual char-
acters or ligatures. Non-segmentation approach uses Hidden Markov Models and
recognizes the entire sequence [6,10]. Convolutional Neural Networks (CNNs) are
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excellent at understanding visual features. Models like AlexNet and ResNet are
exceptionally good at recognition objects [7,9]. But CNNs perform poorly in the
sequence recognition tasks. RNNs are another family of Neural Networks which
are pretty good at sequence-to-sequence tasks [16,19]. So, instead of recogniz-
ing isolated characters or words, researchers worked on sequence recognition. In
sequence recognition, we recognize the entire line instead of recognizing indi-
vidual parts. Recurrent Neural Networks are context-aware and can recognize
patterns occurring in time series [19]. But visual features are troublesome for
RNNs to learn. So a Convolutional Recurrent Neural architecture was proposed
[14,18]. It uses a Convolutional Neural Network as a feature extractor and RNNs
for sequence recognition. It takes advantage of both architectures and performs
exceptionally well.

In ICDAR2017 Competition on Arabic Text Detection and Recognition
in Multi-resolution Video Frames, the THDL-Rec technique used GRUs and
achieved second best scores in evaluation [1,21]. GRU layers usually perform
better than RNNs and LSTMs [5,8]. The most recent work is of OCR frame-
work for detecting and recognizing Urdu in News channels [17]. Tt also uses a
similar approach. It uses Convolutions Neural Networks for extracting visual fea-
tures and Bidirectional LSTM layers for sequence recognition. We have further
improved the method mentioned above by introducing a new model architec-
ture, an improvement in loss function and an aggressive data augmentation for
generalization.

3 Methodology

Since we only focus on Text Recognition in images, videos or live streams, we
assume that we already have a Text Detection module to extract bounding boxes
where the text is present. And we also need dataset containing those cropped
images and their corresponding labels (in form of machine-readable text). In
our case, we have NUST-UTT and the AcTiVComp20 dataset. We evaluate our
method on both datasets.

To easily load datasets for training and inference we propose a formal method
for storing them. This reduces CPU bottleneck and we do not need to write
separate training and evaluation scripts for each dataset. We compute necessary
hyper-parameters for each dataset during this step. This is further discussed in
the Experimental Evaluation section (Sect.4).

Once the dataset is ready, we train our model. In the training loop, we fetch
images and labels from the dataset, perform data augmentation and preprocess-
ing, feed it through the network, compute loss and back-propagate to adjust
weights. We save the weights after each epoch if the validation loss improves.
After training the model, we compute all five metrics (individual for each sample
as well as collective) on the test set. We analyze the weaknesses of the model
and adjust hyper-parameters to improve results.
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3.1 Preprocessing

Urdu and Arabic Text is written from Right to Left. The data in computers
(such as in arrays) are stored from Left to Right. So our labels (sequences of
characters) are stored in reverse order. We either need to invert our label or
the image itself to compute loss. We decided to invert the image (flip it on the
x-axis). The color range of a grey-scale image is 0 to 255. So we normalize the
image to have a range of —1 to +1. Normalizing input helps in gradient flow and
the model converges faster. At this point, we have images that have fixed height
but variable width. We need to have fixed height and width to create batches.
So we pad zeros to images to make its width equal to max-width (computed
in Data Preparation step). For labels, we simply convert each character to its
corresponding index in characters plus 1 and pad the rest of the sequence with
zeros (blank class) to make length equal to max label size.

3.2 Model Architecture

The network architecture is similar to CRNN model [14]. Original CRNN paper
takes input image of height 32px while we input image of 64px. We also use
fewer Convolution filters and fewer hidden units in RNN layers as compared to
CRNN paper. Lastly, we use Bidirectional GRU layers instead of vanilla RNN
layers. The architecture is further discussed below.

Our model has three parts. A CNN features an extractor, RNN layers for
sequence recognition and a classification layer to classify feature vectors to char-
acters. Initializing the model requires two hyper-parameters. Max Width W
and Total Characters C. These two parameters differ from dataset to dataset
and are computed during the Data Preparation step. It is important to notice
Total Characters also includes a blank character which is used by the CTC
Loss function. For NUST-UTT, dataset we used W = 1300 and C = 91. For
AcTiVComp20 dataset, we used W = 1600 and C = 83.

CNN Feature Extractor. The main purpose of the CNN feature extractor is
to extract visual features from the image. RNN layers can be directly applied
to input images but RNN layers are not very good at extracting visual features.
CNN feature makes it easier for RNNs to understand sequence. Most of the noise
and augmentations are filtered out by these CNN layers. This part consists of
Convolution and Max Pooling layers. Each Convolution layer is followed by a
Batch Normalization layer and Leaky ReLU activation function. We also use
Dropout layers for regularization. Max pooling operations reduce the dimensions
of the features. We only apply max pooling on the x-axis twice, reducing the
width by a factor of 4. Applying further max-pooling can increase receptive field
on CNNs but the operation results in poor results as multiple characters start
to overlap on a single feature vector. The max-pooling operations along with
the final Convolution layer squash the height dimension. We simply squeeze the
height dimension.
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Table 1. CNN feature extractor architecture

Layer Kernel size | Padding | Output shape Parameters
Input (1, 64, W) 0
Conv2d (16) 3x3 1x1 |(16, 64, W) 160
N (16) + LReLU (16, 64, W) 32
MaxPool2d 2 (16, 32, W//2) 0
Conv2d (32) 3 1 (32, 32, W//2) 4,640
N (32) + LReLU (32, 32, W//2) 64
MaxPool2d 2 (32, 16, W//4) 0
Conv2d (48) 3 1 (48, 16, W//4) 13,872
BN (48) + LReLU (48, 16, W//4) 96
Conv2d (64) 3x3 1| (64,16, W//4) | 27,712
N (64) + LReLU (64, 16, W//4) 128
MaxPool2d 2 x1 (64, 8, W//4) 0
Dropout (0.2) (64, 8, W//4) 0
Conv2d (96) 3 x3 1 (96, 8, W//4) 55,392
BN (96) + LReLU (96, 8, W//4) 192
Conv2d (128) 3x3 1 |(128, 8, W//4) 110,720
N (128) + LReLU (128, 8, W//4) 256
MaxPool2d 2 x 1 (128,4, W//4) |0
Dropout (0.2) (128, 4, W//4) 0
Conv2d (256) 4x4 (256, 1, W//4 — 3) | 524,544
BN (256) + LReLU (256, 1, W//4 —3)| 512
Reshape (256, W//4—-3) |0
Total parameters 738,320
Table 2. RNN layers architecture
Layer Output shape Parameters
Input 256, W//4—-3) |0
Bidirectional-GRU (256) 512, W//4 —3) | 789,504

BatchNorm (512) + LReLU

1024

Bidirectional-GRU (512)

BatchNorm (1024) + LReLU

1024, W//4 — 3) | 3,151,872

(
(
(512, W//4 —3)
(
(

1024, W//4 — 3) | 2048

Total parameters

3,944,448

RNN Layers. RNN layers are used for sequence-to-sequence translation. In our
case, we need to translate visual features into feature vectors that can be easily
classified into characters. In short, we are performing sequence recognition. In
this section, we use specifically two Bidirectional GRU layers, each one followed
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Fig.1. A diagram summarizing the Model Architecture. The input sample is taken
from AcTiVComp20 dataset [1]. The model consists of CNN Feature Extractor, two
Bi-directional GRU layers and a Classification layer. Data augmentation is applied only
during the training loop.

by a Batch Normalization layer and a Leaky ReLLU activation function. We used
GRU layers as these layers suffer least from gradient vanishing and exploding
problems. GRU layers are faster and lightweight compared to LSTM layers.

Classification Layer. The classification layer consists of a single 1-d Convolu-
tion layer of kernel size of 1 followed by a LogSoftmax activation function. This
layer classifies each feature vector of RNN Layer output into a character. The
output channels of Convolution are equal to Total Characters C. Total number
of parameters of the classification layer are 1025 * C.

3.3 Model Training

To start training, we first load the target dataset containing train, validation
and test sets. We initialize the model with default parameters suited for the
target dataset. We initialize the AdamW optimizer to optimize the weights of
the network.

The training loop takes a batch of images, passes them through the network
and gets output activation of the model. After that, it computes loss between
output activation and ground truths, and backpropagates through the network
to compute gradients. The optimizer optimizes the model based on computed
gradients. The same training loop is used to compute validation loss as well
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but the loss is not backpropagated. The validation loss is used to identify if the
model is converging or not. Model checkpoint is saved only when validation loss
decreases compared to the previous epoch. This makes sure we do not save a
checkpoint that is overfitted on the dataset. Once the training is finished we take
the best checkpoint and evaluate it on the test set. It is important to notice that
we do not use the test set during the whole training process. It is only used to
compute metrics once the whole training process is finished (Table1).

We train the models in two steps. In the first step, we train the model with a
learning rate of 0.0003. Model mostly learns in the first step. We train the model
for nearly 100 epochs or until it stops converging. In the second step, we further
fine-tune the model with a learning rate of 0.0001 for nearly 50 epochs. In this
step, the optimizer tweaks the parameters to slightly improve accuracy (Fig. 1).

3.4 Loss Function

Similar to the CRNN model we also use Connectionist Temporal Classification
Loss (CTC Loss) [14]. Tt is used to predict as well as align the output with
the ground truth. Since we pad images during Pre-processing, we also need to
ignore the output activations for the padded region of the image. Max Width
is the maximum possible width an image can have in the dataset. Most of the
images will not even reach close to the maximum possible width. The padded
region will not contribute to the output of the model, making it difficult for the
model to align text from such a large region. We can make this job easier for
the model by simply ignoring the activations of the padded region. The shape
of the activation region for any image with width W can be calculated using
the formula (C, W//4 — 3) given in Table2. So, We can only consider the first
W//4 — 3 vectors.

We also need to consider receptive fields of CNNs and RNNs. To make
the model fail-safe we add another 16 vectors after the W /// — & vectors.
We call these vectors CTC pad. So total number of output feature vectors
we use for loss function are W /// — 3 + 16. But the term may exceed the
total output feature vectors returned by the model. So, the fail-safe formula is
min(Width//4 — 3 + 16, MaxWidth//4 — 3).

Figure 2 shows an input image and the output activations of the model. The
input image is pre-processed. In the pre-processing step, we invert the image
and pad it to make it fixed-sized. In the output, we can see scores of each class
or character. The Image Activations classify the target character while the CTC
pad section has the highest score for the blank class. The Padding Activations
are random. These are ignored in both training and inference.
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Fig. 2. The diagram shows the input image and the output activations of the model
on the same image. The input can be divided into two parts, the image itself and the
padding to make it fixed sized. The output activation maps show Image Activations,
CTC Pad and Padding Activations. Image Activations are class scores of each character.
CTC Pad consists of regions separating image activations from padding activations.
Padding Activations are ignored in both training and inference.

4 Experimental Evaluation

In this section we will discuss about Data Preparation, Data Augmentation,
Evaluation Metrics and Experiments performed on the datasets.

4.1 Datasets

We focus on two main dataset, AcTiVComp20 dataset and NUST-Urdu Ticker
Text datasets. Both datasets contain ticker text data for News channels. Each
dataset has its own set of alphabets. Both datasets have different characteristics
which are mentioned below.

AcTiVComp20 Dataset. AcTiVComp20 dataset contains 7,943 training sam-
ples which have 36,593 words and 212,393 characters. It has total 83 unique char-
acters. The dataset contains images and their corresponding XML files. XML
files contain labels in both Arabic and Latin transcriptions. We only used Arabic
transcription. The test set is given separately, so we only split the train set into
train (90%) and validation (10%) sets while keeping the test set the same. We
do not perform any data cleaning or correction for AcTiVComp20 dataset. It
is important to notice that AcTiVComp20 dataset contains RGB images while
our method operates at grey scale images. So we convert images to grey scale as
mentioned in Algorithm 1.
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NUST-Urdu Ticker Text (NUST-UTT) Dataset. The NUTS-Urdu Ticker
Text (NUST-UTT) dataset! contains 19,437 data samples. But the dataset con-
tains ligatures separated by spaces instead of words. It has total of 503,273
ligatures, 5,450 unique ligatures and 90 unique characters. We need to convert
ligature into words. We cannot compute WRR without converting text to words.
To solve this issue, we trained a simple 2 layer Bidirectional GRU model that
predicts the positions where the spaces should be inserted in a space less text.
We trained our model on a huge Urdu Corpus. Once the model was trained
we corrected our ground truth with the trained model during Data Preparation
step.

4.2 Data Preparation

The first step is to formalize the given dataset. In short, we convert it into an
easy-to-use format. It reduces the CPU bottleneck for model training. We simply
convert images to grey scale, resize all the images to a fixed height of 64px while
keeping the image aspect ratio the same, store them in the “images” directory.
Then we create three index files. Each one for train-set, validation-set and test-
set. The index files contain a list of image-label pairs separated by a tab. We
can quickly load any set by reading the index files. We also compute a character
file which contains all unique characters that appear in the dataset. We also
compute two hyper-parameters Max Image Width and Max Label Length which
are later used in training process. We use the following algorithm to formalize
the dataset.

The algorithm for each dataset is the same except for data loading and the
data cleaning & data correction steps.

4.3 Data Augmentation

Data augmentation refers to the process of increasing data samples by trans-
forming existing samples. It is very useful in image-based learning tasks. It
prevents over-fitting. We use data augmentation during model training. Data
augmentation is only performed on the train set. We have a total of 9 different
augmentation functions. 4 of them are shape-based augmentation functions and
the rest are color-based augmentations. Shape-based augmentations transform
the image into different dimensions. So, after each shape-based augmentation,
we resize the image to a height of 64px while keeping the aspect ratio the same.

We do not apply all the augmentations to every batch we fetch from the train
set. We select K random augmentation functions for each image fetched from the
train set. Applying all augmentation at the same time can distort the image to
such an extent that it becomes unrecognizable. In other words, the distribution of
the dataset becomes different. The resultant model does not perform well on the
test-set. Applying all augmentation can also cause a CPU bottleneck because

! The Urdu Ticker Text Dataset will be available publicly at https: //tukl.seecs.nust.
edu.pk/downloads.html.
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Data: List of image-label pairs
Result: Processed Dataset
data cleaning & correction;
compute maximum image width;
compute maximum label size;
save max image width and max label size;
create unique characters list;
foreach image_path,label € pairs do
add unseen characters from label to characters list;
load image and convert it to grey scale;
resize image to height 64px while keeping aspect ratio same;
save image to new path and update path in pairs;
end
sort and save characters;
shuffle pairs;
if test set given then
‘ split images into training and validation sets;
else
| split images into training, validation and test sets;
end
foreach set € {trainingset,validationset,testset} do
create index file;
foreach image, label € set do
append image path;
append tab character;
append image label ;
append new line character;
end
close index file ;

end
Algorithm 1: Data preparation steps.

these augmentation functions are CPU-intensive tasks. After testing different
values for K, we decided to use K = 3 for all datasets. Following is the list of all
augmentation functions, their default hyper-parameters and the affect of each
augmentation on the image given below.

Invert Colors. It is a color-based augmentation function that randomly inverts
color. There is a 50% chance for image colors to be inverted.

Pad Image. It is a shape-based augmentation function that randomly pads
each side of the image. It samples the number of pixels for each side (left, right,
top and bottom) from a range of Opx to 20px and pads image accordingly.

Brightness and Contrast. It is a color-based augmentation function that
randomly changes the brightness and contrast of the image. It samples « from a
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range of 0.75 to 1.25 and 3 from a range of —0.25 to 0.25. It computes new value
z’ given original value as z using formula 2z’ = z x a + 8. The output value z’
may exceed the pixel intensity range of 0 to 255. So we clip values that fall out
of this pixel intensity range.

Cloudy Effect. It is a color-based augmentation that adds random soft noise
to the image. It creates a small image containing grain noise. Pixel intensity
values of grain noise image range from —255 to 255. The grain noise image
has dimensions of (W//DOWN_FACTOR, H//DOWN_FACTOR). The variable
DOWN_FACTOR is sampled from a range of 8 to 16. Another variable intensity
1 is sampled from a range of 0 to 1 that refers to the intensity at which the
noise will be applied. To apply the effect, we resize the grain noise image to
the dimensions of the input image using bilinear interpolation, multiply it with
intensity ¢ and add it to the input image. Similar to “Brightness & Contrast”
augmentation, the output image pixel intensity values may exceed the of 0 to
255. We clip values that fall outside of this range.

Blur. It is a color-based augmentation that applies box blur of a random kernel
size to the image. The size of kernel, height and width is sampled from a range
of 1 to 5.

Squeeze. It is a shape-based augmentation function that resizes the image with
a random ratio. X & Y ratios are sampled from a range of 0.9 and 1.1, and the
image is resized to new ratio.

Degrade. It is a color-based augmentation function that down-samples input
image by a random factor and up-samples to original dimensions. It keeps aspect
ratio same when down-sampling the image. Down-sample factor is sampled from
a range of 1 to 2.

Rotate. It is a shape-based augmentation function that rotates image by a
random angle. The angle is sampled from a range of —0.5 to 0.5.

Stretch. It is a shape-based augmentation function that stretches or compresses
random chunks of the image. We divide image from left to right in chunks of
random width ranging from 64px to 128px. Stretch or compression is only applied
on x-axis (width). These chunks are then concatenate to get output image (Figs. 3
and 4).
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Fig. 3. Reference image to show different augmentations.
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Fig. 4. Visualization of all augmentation functions respectively.

4.4 Evaluation Metrics

We trained and evaluated our model on both datasets. The evaluation is based
on five different metrics. We compute character recognition space (CRR), word
recognition rate (WRR) and line recognition rate (LRR) which are used to eval-
uate any text recognition model. We also compute CRR-WS and LRR-WS. WS
referring to Without Spaces. In languages like Arabic or Urdu, some words can
be understood without having a space between them. So space in such cases
is optional. A space between two ligatures of a single word is optional as well.
Word Recognition Rate (WRR) and Line Recognition Rate (LRR) are very sen-
sitive on it. A single incorrectly predicted character can invalidate the entire line
causing LRR to be zero. So also we compute CRR and LRR by ignoring spaces.
We call them CRR-WS and LRR-WS.

Computing CRR and WRR without spaces are also important for the NUST-
UTT dataset. The dataset originally contained ligatures separated by spaces.
We fixed dataset by predicting spaces after words in a spaceless Urdu text using
another model. The reconstructed dataset contains words separated by space.
But the reconstruction is not perfect. So it is important to compute WRR-WS
and LRR-WS metrics.

4.5 Hyper-parameter Selection

Before training the models, we performed a hyper-parameter search to look for
the best parameters to train the model. We tested three optimizers with two
different learning rates. We tested SGD, Adam and AdamW. For learning rate,
we tested learning rates of 0.001 and 0.0003. Hyper-parameter search is a very
time-consuming task, so we ran our simulations for 10 epochs and computed test
metrics. This gives us a general idea about what parameters should we use.

4.6 Experiments Performed

We compared our model with Google Vision APIs as well [2]. Google Vision
APIs provide Optical Character Recognition for both Urdu and Arabic language.
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Urdu APIs are currently in experimental phase. We used Google Vision APIs
to extract text from all the test images for both datasets. We compared the
output of APIs with the ground-truth. We computed all five evaluation metrics
for Google Vision APIs as well. We compared our model with the Google Vision
APIs.

5 Results and Discussion

The hyper-parameter search gave us a general idea about parameters to choose
for training. As Table3 shows, the model optimized using AdamW optimizer
with a learning rate of 0.0003 performed the best. SGD performed the worst.
It could be because SGD takes much longer to optimize. SGD optimizer with
a learning rate of 0.0003 did not learn anything in 10 epochs. After performing
the hyper-parameter search we decided to use AdamW optimizer with a learning
rate of 0.0003. We trained the models for 100 epochs and then further fine-tuned
models with a learning rate of 0.0001 for 50 more epochs. Table 3 shows the final
metrics of the model on each dataset.

Table 3. Results of the hyper-parameter search for Urdu Ticker Text dataset trained
for 10 epochs. AdamW with a learning rate of 0.0003 performed the best.

Optimizer | Learning rate | CRR WRR LRR CRR-WS | LRR-WS
AdamW | 0.0003 98.52% | 88.37% | 48.92% | 99.73% |89.92%
AdamW |0.001 98.39% | 87.6% |46.4% ]99.65% |86.57%
Adam 0.0003 98.48% | 88.11% |48.66% |99.68% |87.91%
Adam 0.001 98.2% 86.01% |41.41% |99.65% 87.04%
SGD 0.0003 0% 0% 0% 0% 0%

SGD 0.001 42.16% | 5.74% | 0% 34.28% | 0%

Once the training finished, we evaluated both models on their respective
datasets. We also evaluate results for Google Vision APIs on both datasets as
well. We compare each sample prediction with its ground turth and take mean
of all individual metric values. The Table 4 shows the final results of our models
compared with Google APIs. [2]

In Urdu Ticker Text Dataset, metrics without spaces are much better than
normal ones. The LRR is only 48.92% while LRR-WS is 89.92%. Its shows that
space inconsistencies in Urdu Ticker Text Dataset are huge as compared to the
AcTiVComp20 dataset. The results show that OCR is difficult to do in the
Arabic language as compared to Urdu. But it could be due to the incorrect
labeling of digits, as mentioned in the Failure Cases section.

Finally, we analyze the failure cases of our model. We created a table con-
taining ground truth and model predictions of all data samples in the test set.
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Table 4. Final results on both datasets compared with Google Vision APIs.

Dataset Method CRR WRR LRR CRR-WS | LRR-WS
NUST-UTT Google Vision | 93.71% |65.80% |8% 96.21% |40.07%
NUST-UTT Ours 98.66% | 89.32% | 52.05% | 99.76% | 90.84%
AcTiVComp20 | Google Vision | 91.69% | 76.62% |64.61% |92.95% |71.25%
AcTiVComp20 | Ours 96.82% | 90.41% | 76.78% | 96.83% | 79.38%

We also computed all of the five metrics for individual data samples. We were
able to identify major problems with our approach.

In AcTiVComp20 dataset, the model mostly fails to recognize numeric digits
or special character. It is because the digits in Arabic transcription are stored
in reverse order but do visually appear correct as shown in Fig.5. This makes
harder for RNN layers to recognize digits in AcTiVComp20 dataset. This issue
can be solved by inverting sequence of digits of all numbers in the dataset or
simply using Latin transcription instead.

2018 Liawg) Juaig

2018 ) Jintiss

Fig. 5. The diagram shows the problem we faced with Arabic transcription of AcTiV-
Comp20 dataset [1]. The order in which the characters are stored were incorrect for
digits in Arabic transcription. Visually the text below aligns with the image but it is
not read correctly by computers. The arrows at the bottom show the order in which
the label is actually stored.

In NUST-UTT dataset, the failure cases are mostly related to space incon-
sistencies. This can be observed from results. There is huge difference in normal
and WS metrics. The LRR improved from 52.05% to 90.84% when the spaces
were ignored.

6 Conclusion

In this paper, we proposed a technique to efficiently recognize Urdu and Arabic
text from video. This includes the different types of augmentation functions,
how to apply them, and how it helps regularize the model. We also explained
the model architecture, the purpose of each part and its total parameters. Lastly,
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we explained the training and evaluation process for our model. In the training
process, we explained how the CTC Loss function can be modified to achieve
better results.

There is a lot of room for improvement. We only performed a hyper-
parameter search for only 10 epochs. And the total search space was very limited.
A better hyper-parameter search can help us improve the results. Results can
be further improved by solving issues mentioned in the Failure Cases section. In
the AcTiVComp20 dataset, we need to fix the order of digits for numbers. And
for the NUST-UTT dataset, we need to fix the issue with space inconsistencies.
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