
On the Performance of Decapod’s Digital Font Reconstruction

Hasan S. M. Al-Khaffaf1, Faisal Shafait2, Michael P. Cutter3, Thomas M. Breuel1

1IUPR Research Group, Technische Universität Kaiserslautern, Germany

hasansm@rhrk.uni-kl.de, tmb@uni-kl.de

2Multimedia Analysis and Data Mining Competence Center,

German Research Center for Artificial Intelligence (DFKI)

faisal.shafait@dfki.de

3Computer Vision Lab, Computer Engineering Department,

University of California at Santa Cruz

mcutter@soe.ucsc.edu

Abstract

This paper presents the current status of Decapod’s

English font reconstruction. The Potrace algorithm and

its parameters that affect glyph shape are examined.

The visual fidelity of Decapod’s font reconstruction is

shown and compared to Adobe ClearScanTM. The font

reconstruction details of the two methods are presented.

The experiment demonstrates the capabilities of the two

methods in reconstructing the font for a synthetic book

typeset each time with one of six English fonts, three

serif and three sans-serif. For both typefaces, Decapod

is able to create a reusable TTF font that is embedded

in the generated PDF document.

1. Introduction

Documents are displayed today on a wide variety of

devices, ranging from smart phones, e-book readers,

to high resolution computer displays. While most of

the electronically generated documents (e-mails, web

pages, PDF/A etc.) intrinsically reflow themselves to

fit the screen size of the display device, scanned doc-

uments remain static due to insufficient technological

support to enable reflowing or rescaling them in an

elegant way. Generation of vectorized fonts from a

scanned document image is an important step towards

filling this gap. E-reader devices would benefit from

such a flexible reflowable document format.

The research in this paper is supported by Decapod project of the

Andrew W. Mellon Foundation.

Font reconstruction is a process that analyzes charac-

ter shapes of raster documents and creates a customized

parametric font that is visually faithful to the origi-

nal [8]. Font reconstruction will make old and rare doc-

uments available for the user in searchable and reflow-

able digital format. Optical font recognition (OFR) re-

search problem has been in the literature since a decade.

A method based on multivariate Bayesian classifier rec-

ognizes English fonts of high quality images with 97%

accuracy [10]. Another method based on global tex-

ture analysis for font recognition achieves an average

99.1% in the detection of 65 popular English and Chi-

nese fonts [9].

Only recently, the optical font reconstruction prob-

lem has been tackled by Cutter et al. [5, 6] within the

framework of Decapod project. Decapod is a low cost

open source document digitization solution for rare and

scholarly material [2, 8]. It provides a complete solu-

tion for the digitization problem including both soft-

ware and hardware parts. Decapod relies on OCRo-

pus [3] to analyze page layout and detect the text. Then,

the font reconstruction uses a binned nearest-neighbor

classifier [5] to partition character images into tokens.

Greedy graph segmentation [6] is then applied to parti-

tion tokens into candidate fonts. The next stage, font

generation explained in detail in section 2, generates

the font out of the input raster tokens. The font file is

then embedded in the output PDF file. Another solution

for font reconstruction is provided by Adobe in Acrobat

X Pro R© which includes a feature called ClearScan that

creates custom fonts for scanned documents and embed

them in PDF file along with the OCR text. Adobe’s

website [1] describes ClearScan as a feature that im-

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 649

proves text quality, reduces file size, and decreases print

time. However, the internal details of the font cus-

tomization algorithms are not shown.

In this paper we will evaluate the fidelity of font

reconstruction step of the Decapod’s pipeline. Visual

resemblance of Decapod’s font reconstruction is com-

pared against the original fonts and Mean Square Er-

ror (MSE) is the objective measure used in the experi-

ment. However, other typesetting parameters like left-

and right- bearings and distance between characters are

not included in the evaluation.

2. Font Generation in Decapod

The input to the font reconstruction stage is one

bitmap for each character class identified in the im-

age. This bitmap can be used directly to create what

is called a bitmap font. However, such fonts are not de-

sirable since they are vulnerable to scale operation lead-

ing to unpleasant viewing experience. The right option

for the reconstructed font is to use outline fonts (e.g.

TrueType) where each glyph is represented by its out-

line curves. The parametric nature of these curves en-

ables scaling while keeping visual fidelity to the orig-

inal character shape. In order to create outline fonts

the character bitmaps need to be converted into vector

form. The contour of the bitmaps need to be traced and

converted into curves. The Potrace algorithm proposed

by Selinger [7] is used for this purpose. The algorithm

consists of four steps: (i) form a path on n consecutive

contour points; (ii) approximate each path by a poly-

gon of straight paths; (iii) the polygon is parametrized

as a smooth curve; and (iv) the curve is optimized by

merging consecutive branches, if possible.

The algorithm has many parameters that can affect

the output. One parameter that can affect the shape of

the created character glyph is the α parameter which is

used in corner detection. Let’s assume that a polygon

vertices are v0...vk−1. The edges before and after a ver-

tex, let’s say v1, need to be approximated by a corner

or a curve. If α is set to a value ≤ 1, a curve is drawn.

Otherwise, no curve will be drawn and the two edges are

intersected at the vertex v1. Figure 1-a shows the glyph

of letter ’A’ with two different values of α. Setting α

to a small value creates a letter with sharp edges (Left

part of Fig. 1-a) while setting α too high will create a

letter that is curvy. A moderate value for the parameter

(α = 1) is appropriate for the characters we have which

is created at 300 dots per inch (DPI) resolution.

Another parameter that affects shape of the glyph,

although in less sensible way than α, is the curve opti-

mization tolerance O. The algorithm merge many con-

secutive short Bézier curves into a single Bézier curve.

(a) L: α = 0.1, R: α = 1.9(b) L: O = 0.1, R: O = 1.8

Figure 1: The effect of Potrace parameters on character

shape. (a) The α parameter. All polygons (left) .vs all

curves (right). (b) The O parameter. Few merges (left)

vs. many merges of Bézier curves (right)

On the other hand, consecutive line segments are not

merged so as adjacent curves who disagree in convex-

ity. This parameter sets the error threshold for the al-

gorithm to merge curves. Figure 1-b shows an example

with two different values of O. Note the curvy right

limb in right part of Fig. 1-b created due to the relaxed

tolerance resulting the merge of two curves.

3. Font Reconstruction: Decapod vs. Adobe

X Pro

Both solutions are capable of creating an embedded

font from a given raster image. However, there are dif-

ferences in how this task is performed. Table 1 shows

different features considered during font reconstruction.

Table 1: Features of Decapod and ClearScan font re-

construction

Method Font Reusable Ligatures Multi g/c† Embeded

Decapod TTF Yes‡ No No Yes

ClearScan CFF No Yes Yes Yes
†Multi glyph per character class
‡Fully reusable if all alphabet glyphs were created

Both solutions have different approaches when pro-

cessing a document typeset with only one font. In De-

capod, one TTF font is created with one single glyph

per character class, because Decapod aims to create one

font for a document typeset with one font type. On

the other hand ClearScan creates multi CFF font files

with possibly multi glyphs per character class. How-

ever, each glyph in ClearScan represents many samples

of the same character class. One reason for Adobe X

Pro to use CFF fonts might be to support a wide range

of languages and also in the flexibility of CFF fonts in

handling thousands of different glyphs [4]. The other

difference between the two methods is in font reusabil-

ity. The aim of Decapod is to create a font with high

fidelity to the original. However, another target is to re-

construct the font of the document and to make it avail-

able to complete or typeset a new document. On the

other hand Adobe X Pro seems to focus on creating a

font that not only reflects the document visual appear-

ance, but also improves its quality. The third difference

650

is in the use of ligatures. Decapod work is based on

OCR using Ocropus. Ocropus detects each character

individually. Hence, we are limited to using one glyph

per character. Therefore Decapod can not produce lig-

ature glyphs. In contrary, Adobe X Pro creates liga-

tures and stores each as a separate glyph in the CFF

font file (Fig. 2). Finally, both solutions embed the cre-

(a) ff (b) ft (c) t: (d) rl

Figure 2: ClearScan reconstructed fonts include liga-

tures

ated font(s) in the generated PDF file. However, Deca-

pod creates another external copy of the font file which

can be used to typeset a new document assuming all re-

quired glyphs are recognized and exist in the original

document.

4. Evaluation of Font Generation

A PC running Ubuntu GNU/Linux is used to test De-

capod’s genpdf module while Windows Vista is the plat-

form used to test Adobe Acrobat X Pro. The dataset

is a novel of 60 pages and 170,000 letters (spaces not

counted) typeset each time with one of six fonts namely

Arial, Comic Sans MS, Times New Roman, Courier 10

Pitch, Liberation Serif, and Dejavu Sans Condensed.

The books are then converted into PNG file format at

300DPI. The raster images are fed into the two soft-

ware and the reconstructed PDF files with embedded

fonts are generated. Figure 3 shows a sample output for

the two methods from the book typeset with Times New

Roman font. The PDF files are rasterized again and

each page is segmented into lines with its correspond-

ing detected text. Bounding boxes of all characters are

also calculated. The line images, text, bounding boxes

are stored in OCRopus book directory structure. Ev-

ery character of the reconstructed document represented

by its bitmap is compared to its corresponding raster-

ized font glyph to get a performance measure (MSE).

Prior to the comparison, the reconstructed character im-

age and the glyph image are normalized to same height

and width. The MSE measures of all characters in the

book are accumulated and each fonted book yields one

final MSE score (Fig. 4). However, some lines are lost

during the segmentation stage due to misclassification,

preventing the calculation of MSE values for characters

of missing lines. Hence, a penalty (Eq. 1) is added for

any missing line.

P = Llen × w × [Achar × Evalue] (1)

Table 2: Penalty term values of Eq. 1. Where Llen is the

average # characters/line and Achar is the approximate

area/character (area in pixel2 unit)

Font Llen Achar

Arial 60 48×54

Comic Sans MS 58 47×54

Times New Roman 60 42×47

Courier 10 Pitch 60 48×47

Liberation Serif 60 39×48

Dejavu Sans Condensed 61 42×58

where Llen is the average number of characters per text

line and w is the weight of the penalty to consider for

a single character. The approximate area of the charac-

ter is Achar and the amount of error to consider for each

pixel is Evalue. The added penalty reflects the contribu-

tion of missing lines to the MSE. However, due to dif-

ferences in character shapes between the different fonts,

some term values of Eq. 1 differs between fonts, hence,

the MSE becomes comparable between many methods

on any single font, but not between different fonts. The

term values of Llen and Achar of Eq. 1 used in the ex-

periment is shown in Table 2. The other term values

are as follows (w= 0.01 and Evalue= 64∧2). The final

accumulated MSE’s after adding the penalty are shown

in Fig. 6. By using this penalty scheme, the normalized

performance of the two systems becomes comparable.

5. Results and Discussion

The performance of the benchmarked methods are

shown in Fig. 6 where low value indicates better vi-

sual match between original and reconstructed font. It

is shown in Fig. 6 that the performance of genpdf is

lower in quality than that of ClearScan for the six tested

fonts. One reason for the high MSE values for genpdf

compared with ClearScan is thicker glyphs in the for-

mer. An undesirable side effect of token compression is

that the created token becomes a little thicker than the

original character shape. The process of merging simi-

lar character images into a token is necessary to create

a font that represents the document, however it has side

effect of thickening the created glyph, hence raising the

MSE score.

Another aspect of font reconstruction is the serif vs.

sans-serif fonts. Figure 5 shows an example of three dif-

ferent fonts: one sans-serif (Arial) and two serifed fonts

(Times New Roman and Courier 10 Pitch). Currently,

Decapod is more capable of reconstructing sans-serif

fonts than serif fonts due to difficulty in reconstructing

the small short part of the serif.

651

����

���������
��)
��-�����
��)�
��������
������-�����	
��
*�

boy sat on the steps of the shop and took a book from his bag.

@s��~?��sn��UF�~�Ft~�sG��UF�~Ust�?nD��ssa�?�@ssa�Gvsk�UY~�@?R��

�)�DYDn���ans��~UFtUFvD~�anF��Us���s�vF?D���~?YD�?�RXvf�~��sYCF�@FUXnD�UYk��

8UF�RYvf��?~���tYC?f�sG��UF�vFRYsn�sG��nD?f�~X?���Y�U�Ms�XnR�@f?Ca�U?Yv��?nD�F�F~��U?��

�?R�Ff��vFC?ffFD��UF�/ssvY~U�Csnu�Fvsv~��

�=Fff���~�?ff��)�fF?vn�ksvF�Gvsk�k��~UFFt��U?n�Gvsk�@ssa~���UF�?n~�FvFD��"�vYnR��UF�

��s�Us�v~��U?���UF���?faFD��~UF��sfD�UYk�~UF��?~��UF�kFvCU?n��~�D?�RU�Fv��?nD�~tsaF�sG�

fXGF�Yn��UF��Yff?RF���UFvF�F?CU�D?���?~�fYaF�?ff��UF�s�UFv~��8UF�~UFtUFvD��sfD�UFv�sG��UF�

�nD?f�~X?n�Cs�n�v�~YDF��?nD�vFf?�FD��UF�nF�~�Gvsk��UF�s�UFv��s�n~��UFvF�UF�U?D�~�sttFD��

)���?~�?�tfF?~?n��CU?nRF�Gvsk��?faXnR��s�UY~�~UFFt��

�'s��DYD��s��fF?vn��s�vF?D����UF�RYvf�?~aFD�?��snF�tsYn���

�.XaF�F�Fv�@sD��fF?z~���UF�~?YD�� �)n�~CUssf���

�=Fff��XG��s��cns��Us���s�vF?D���U��?vF��s��]�~��?�~UFtUFvD���

8UF�@s��k�k@fFD�?n�?n~�Fv��U?��?ffs�FD�UYk��s�?�sXD�vF~tsnDYnR��s�UFv�u�F~�Xsn��'F�

�?~�~�vF��UF�RYvf��s�fD�nF�Fv��nDFv~�?nD��'F��Fn��sn��FffYnR�~�svYF~�?@s���UY~��v?�Ff~��?nD�

UFv�@vYRU���/ssvY~U�F�F~��Fn���XDF��X�U�GF?v�?nD�~�vtvY~F���~��UF��YkF�t?~~FD���UF�@s��

Gs�nD�UYk~FfG��X~UYnR��U?���UF�D?���s�fD�nF�Fv�FnD���U?��UFv�G?�UFv��s�fD�~�?��@�~��?nD�

aFFt�UYk��?Y�YnR�Gsv��UvFF�D?�~��'F�vFCsRnY�FD��U?��UF��?~�GFFfYnR�~skF�UYnR�UF�U?D�

nF�Fv�F�tFvXFnCFD�@FGsvF���UF�DF~YvF��s�fY�F�Yn�snF�tf?CF�GsvF�Fv��=Y�U��UF�RYvf��Y�U��UF�

v?�Fn�U?Xv��UY~�D?�~��s�fD�nF�Fv�@F��UF�~?kF�?R?Yn��

����Kn?ff���UF�kFvCU?n��?ttF?vFD��?nD�?~aFD��UF�@s���s�~UF?v�Gs�v�~UFFt��'F�t?YD�Gsv��UF�

�ssf�?nD�?~aFD��UF�~UFtUFvD��s�CskF�@?Ca��UF�Gsffs�YnR��F?v��

��

�nD�ns��Y���?~�snf��Gs�v�D?�~�@FGsvF�UF��s�fD�@F�@?Ca�Yn��U?��~?kF��Xff?RF��'F��?~�

F�CY�FD��?nD�?���UF�~?kF��YkF��nF?~���k?�@F��UF�RYvf�U?D�?fvF?D��GsvRs��Fn�UYk�� .s�~�sG�

~UFtUFvD~�t?~~FD��Uvs�RU��~FffYnR��UFXv��ssf��

�)��DsF~n���k?��Fv���UF�~?XD��s�UY~�~UFFt�� �)�ans��s�UFv�RYvf~�Yn�s�UFv�tf?CF~���

����Yn�UY~�UF?v��UF�anF���U?��Y��DXD�k?��Fv���nD�UF�cnF���U?��~UFtUFvD~��fYaF�~F?kFn�?nD�

fXaF��v?�FfYnR�~?fF~kFn��?f�?�~�Gs�nD�?��s�n��UFvF��UFvF��?~�~skFsnF��Us�Cs�fD�k?aF�

�UFk�GsvRF���UF�]s�~�sG�C?vFGvFF��?nDFvYnR��

8UF�D?���?~�D?�nXnR��?nD��UF�~UFtUFvD��vRFD�UY~�~UFFt�Yn��UF�DYvFC�Xsn�sG��UF�~�n��8UF��

nF�Fv�U?�F��s�k?aF�?n��DFCX~Ysn~��UF��Us�RU���/?�@F��U?��~��U���UF��?f�?�~�~�?��Cfs~F��s�

kF��

8UF�snf���UYnR~��U?��CsnCFzFD��UF�~UFFt��FvF�GssD�?nD��?�Fv�� �~�fsnR�?~��UF�@s��anF��

Us���s�KnD��UF�@F~��t?~��vF~�Yn��nD?f�~Y?���UF���s�fD�@F�UY~�GvYFnD~��>F~���UFYv�D?�~�

�FvF�?ff��UF�~?kF���Y�U��UF�~FFkYnRf��FnDfF~~�Us�v~�@F��FFn�~�nvY~F�?nD�D�~a��?nD��UF��

U?D�nF�Fv�vF?D�?�@ssa�Yn��UFYv��s�nR�fX�F~��?nD�DYDn����nDFv~�?nD��UFn��UF�@s���sfD��UFk�

?@s����UF�~XRU�~�sG��UF�CY�YF~��8UF���FvF�Csn�Fn���Y�U�]�~��GssD�?nD��?�Fv��?nD��Yn�

F�CU?nRF���UF��RFnFvs�~f��R?�F�sG��UFYv��ssf���UFYv�Cskt?n���?nD� snCF�Yn�?��UXfF�

�UFYv�kF?���

)G�)�@FC?kF�?�ksn~�Fv��sD?���?nD�DFCYDFD��s�aYff��UFk��snF�@��snF���UF���s�fD�@FCskF�

?�?vF�snf��?G�Fv�ks~��sG��UF�LsCa�U?D�@FFn�~f?�RU�FvFD���Us�RU���UF�@s���8UF���v�~��kF��

?nD��UF���F�GsvRs��Fn�Us���s�vFf��sn��UFYv�s�n�Xn~�XnC�~��@FC?�~F�)�fF?D��UFk��s�

ns�vX~UkFn���

8UF�@s���?~�~�vtvX~FD�?��UY~��Us�RU�~��/?�@F��UF�CU�vCU���Y�U��UF�~�C?ksvF�Rvs�XnR�

Gvsk��Y�UXn��U?D�@FFn�U?�n�FD��(��U?D�C?�~FD�UYk��s�U?�F��UF�~?kF�DvF?k�Gsv�?�~FCsnD�

�XkF��?nD�X���?~�C?�~XnR�UYk��s�GFFf�?nRFv��s�?vD�UY~�G?Y�UG�f�Cskt?nXsn~��'F�Dv?na�?�@Y��

Gvsk��UF��YnF��U?��vFk?YnFD�Gvsk�UY~�DYnnFv�sG��UF�nYRU��@FGsvF��?nD�UF�R?�UFvFD�UY~�

]?CaF��Cfs~Fv��s�UY~�@sD���'F�anF���U?��?�GF��Us�v~�Gvsk�ns����X�U��UF�~�n�?��Y�~��FnY�U��

�UF�UF?���s�fD�@F�~s�RvF?���U?��UF��s�fD�ns��@F�?@fF��s�fF?D�UY~�HgsCa�?Cvs~~��UF�HZFfD~��)��

Figure 3: Sample line of Times font. Top- Original, Middle- Decapod, Bottom- ClearScan

���
	
�����	����	��	

�����	���	�����	
�������	��	�����	

����������	�����	
���� �	����	���!����!	

�

�"#

�

�"#

$

$"#

%

%"#

&

%"�

%"'

%"$
$"($") $"(

%"$ %"$

�"(

$"($")

%"$

�����������	��	����	��������������
��*	��	+�

����

����,�!	

�
�������

-���

�
�
*

Figure 4: Font reconstruction performances on many

fonts (before penalizing missing lines)

Figure 5: The letter S in Arial, Times New Roman, and

Courier 10 Pitch fonts respectively. Top- Original fonts,

Bottom- Decapod reconstructed fonts

���
	
�����	����	��	

�����	���	�����	
�������	��	�����	

����������	�����	
���� �	����	���!	

�

�

"

#

$

%

&

#'(

$'#

#'%

$'#

#'�

%'%

#'$ #'%
#'� #'�

"')
#'"

�����������	��	����	��������������
��*	��	+�

����

����,�!

�
�������

-����

�
�
*

Figure 6: Font reconstruction performances on many

fonts (after penalizing missing lines)

6. Conclusions

This paper presents the current status of the De-

capod’s font reconstruction which includes the use of

Selinger Potrace method for tracing of character bound-

aries and the parameters affecting character shape. De-

capod’s font generation is also compared with Adobe

ClearScan, a commercial digitization software. Our ex-

periment on six fonts shows that the two solutions can

reconstruct fonts in acceptable shape. ClearScan cre-

ates font(s) with high fidelity to the original. Decapod’s

current status produces fonts with readable text. How-

ever, considering that the test data is synthetic the re-

constructed fonts from both software is still not perfect.

The future work for Decapod’s font generation is to

enhance glyph tracing by considering some morpholog-

ical operations on the scaled-up bitmap of each glyph

prior to tracing. A qualitative evaluation of font recon-

struction is another planned future work to measure the

user satisfaction with the reconstructed font.

References

[1] Adobe Blog: Better PDF OCR. ClearScan is smaller,

looks better. http://blogs.adobe.com/acrolaw/2009/05/

better pdf ocr clearscan is smal/, accessed on Mar

2012.
[2] Decapod. http://sites.google.com/site/decapodproject/.
[3] The OCRopus(tm) open source document analysis and

OCR system. http://code.google.com/p/ocropus/.
[4] PDF Reference, sixth edition, version 1.7, Nov 2006.
[5] M. P. Cutter, J. v. Beusekom, F. Shafait, and T. M.

Breuel. Unsupervised font reconstruction based on to-

ken co-occurrence. In Proceedings of the 10th ACM

symposium on Document engineering, DocEng’10,

143–150, New York, NY, USA, 2010. ACM.
[6] M. P. Cutter, J. van Beusekom, F. Shafait, and T. M.

Breuel. Font group identification using reconstructed

fonts. In G. Agam and C. Viard-Gaudin, editors, DRR,

volume 7874 of SPIE Proceedings, 1–10. SPIE, 2011.
[7] P. Selinger. Potrace - transforming bitmaps into vec-

tor graphics. http://potrace.sourceforge.net/, accessed

on Mar 2012.
[8] F. Shafait, M. P. Cutter, J. van Beusekom, S. S. Bukhari,

and T. Breuel. Decapod: A flexible, low cost digiti-

zation solution for small and medium archives. In 4th

International Workshop on Camera-Based Document

Analysis and Recognition, Lecture Notes in Computer

Science. Springer, Sep 2011.
[9] Y. Zhu, T. Tan, and Y. Wang. Font recognition based on

global texture analysis. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 23(10):1192–1200,

Oct 2001.
[10] A. Zramdini and R. Ingold. Optical font recognition

using typographical features. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 20(8):877–

882, Aug 1998.

652

