
Rethinking Table Recognition using
Graph Neural Networks

Shah Rukh Qasim∗, Hassan Mahmood∗, and Faisal Shafait∗,†
∗School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Islamabad, Pakistan
†Deep Learning Laboratory, National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan

Email: faisal.shafait@seecs.edu.pk

Abstract—Document structure analysis, such as zone segmen-
tation and table recognition, is a complex problem in document
processing and is an active area of research. The recent success
of deep learning in solving various computer vision and machine
learning problems has not been reflected in document structure
analysis since conventional neural networks are not well suited
to the input structure of the problem. In this paper, we propose
an architecture based on graph networks as a better alternative
to standard neural networks for table recognition. We argue that
graph networks are a more natural choice for these problems,
and explore two gradient-based graph neural networks. Our pro-
posed architecture combines the benefits of convolutional neural
networks for visual feature extraction and graph networks for
dealing with the problem structure. We empirically demonstrate
that our method outperforms the baseline by a significant margin.
In addition, we identify the lack of large scale datasets as a major
hindrance for deep learning research for structure analysis and
present a new large scale synthetic dataset for the problem of
table recognition. Finally, we open-source our implementation
of dataset generation and the training framework of our graph
networks to promote reproducible research in this direction1.

Keywords-Table Recognition; Structure Analysis; Graph Neu-
ral Networks; Document Model; Graph Model; Dataset

I. INTRODUCTION

Structural analysis is one of the most important aspects
of document processing. It incorporates both physical and
logical layout analysis and also includes parsing or recognition
of complex structured layouts including tables, receipts, and
forms. While there has been a lot of research done in physical
and logical layout analysis of documents, there is still ample
room for contribution towards parsing of structured layouts,
such as tables, within them. Tables provide an intuitive and
natural way to present data in a format which could be readily
interpreted by humans. Based on its significance and difficulty
level, table structure analysis has attracted a large number of
researchers to make contributions in this domain.

Table detection and recognition is an old problem with
research starting from the late nineties. One of the initial work
is by Kieninger et al. [1]. They used a bottom-up approach
on words bounding boxes using a heuristics-based algorithm.
Later on, many different hand-crafted features based methods
were introduced including [2], [3], [4] and [5] which relied
on custom-designed algorithms. Zanibbi et al. [6] present a

1github.com/shahrukhqasim/TIES-2.0

comprehensive survey of table detection and structure recog-
nition algorithms at that time. An approach to recognize tables
in spreadsheets was presented by [7] which classified every
cell into either a header, a title, or a data cell. Significant
work was done by Shafait et al. [8] where they introduced
different performance metrics for the table detection problem.
These approaches are not data driven and they make strong
assumptions about tabular structures.

Chen et al. [9] used support vector machines and dynamic
programming for table detection in handwritten documents.
Kasar et al. [10] also used SVMs on ruling lines to detect
tables. Hao et al. [11] used loose rules for extracting table
regions and classified the regions using CNNs. They also used
textual information from PDFs to improve the model results.
Rashid et al. [12] used positional information in every word to
classify it as either a table or a non-table using dense neural
networks.

After 2016, the research trod towards using deep learning
models to solve the challenge. In 2017, many papers were
presented which used object detection or segmentation models
for table detection and parsing. Gilani et al. [13] employed
distance transform encoded information in an image and ap-
plied Faster RCNN [14] on these images. Schreiber et al. [15]
also used Faster RCNN for table detection and extraction of
rows and columns. For parsing, they applied object detection
algorithm on vertically stretched document images. Leveraging
the tables’ property to empirically contain more numeric data
than textual data, Arif et al. [16] proposed to color code the
document image to distinguish the numeric text and applied
faster RCNN to extract table regions. Similarly, Siddique et
al. [17] presented an end-to-end Faster-RCNN pipeline for ta-
ble detection task and used Deformable Convolutional Neural
Network [18] as feature extractor for its capability to mold its
receptive field based on the input. He et al. [19] segmented the
document image into three classes: text, tables, and figures.
They proposed to use Conditional Random Field (CRF) to
improve results from Fully Convolutional Network (FCN)
conditioned on the output from the contour edge detection
network. Kavasidis et al. [20] employed CRFs on saliency
maps extracted by Fully Convolutional Neural Network to
detect tables, and different type of charts.

Even though many researchers have shown that using object
detection based approaches work well for table detection

https://github.com/shahrukhqasim/TIES-2.0

(a) Category 1 (b) Category 2

(c) Category 3 (d) Category 4

Fig. 1: Images with different difficulty categories. Category 1 images are plain images with no merging and with ruling lines. Category 2
adds different border types including occasional absence of ruling lines. Category 3 is the hardest one which introduces cell and column
merging. Category 4 models camera captured images by linear perspective transform.

Fig. 2: A pictorial representation of our architecture. For a document image, a feature map is extracted using the CNN model and words’
positions are extracted using an OCR engine or an oracle (+). Image features, corresponding to the words’ positions, are gathered (-) and
concatenated (||) with positional features to form the input features (*). An interaction network is applied to the input features to get
representative features. For each vertex (word), sampling is done individually for cells, rows and columns classification. The representative
features for every sample pair are concatenated again and used as the input for the dense nets. These dense nets are different for rows,
columns and cells sharing. Sampling is only done during the training. During the inference, every vertex pair is classified.

and recognition, defining the parsing problem in the form
of object-detection problem is hard, especially if the docu-
ments are camera captured and contain perspective distortions.
Approaches like [15] partially solve the issue but it is still
not a natural approach. It also makes it harder to use further
features which could be extracted independently, for instance,
the language features which could possibly hint towards the
existence of a table.

In this paper, we define the problem using graph theory
and apply graph neural networks to it. One of the initial
research in graph neural networks is done by Scarselli et
al. [21] where they formulated a comprehensive graph model
based on contraction maps. In recent years, they have gained
a lot of traction due to the increase in compute power and
with the introduction of newer methods. Many notable works
include [22], [23], [24]. Battaglia et al. [25] argued that
relational inductive biases are the key to achieving human

like-intelligence and showed how graph neural networks are
essential for it.

The use of graphs in document processing is not new.
There have been many papers published which employ graph-
based models for a wide range of problems. Liang et al. [26]
introduced a hierarchical tree-like structure for document pars-
ing. Work presented by Wang [27] gained a lot of popularity
and was used by many researchers afterward. Hu et al. [28]
introduced a comprehensive graph model involving a Directed
Acyclic Graph (DAG) with detailed definitions of various
elements of a table. Recently, Koci et al. [29] presented an ap-
proach where they encoded information in the form of a graph.
Afterward, they used a newly-proposed rule-based remove-
and-conquer algorithm. Bunke et al. [30] provides a detailed
analysis of different graph-based techniques employed in the
context of document analysis. These methods make strong
assumptions about the underlying structure which contradicts

with the philosophy of deep learning. Even though we are
not the �rst ones to use graphs for document processing, to
the best of our knowledge, we are the �rst ones to apply
graph neural networks to our problem. We have done our
experiments on the table recognition problem, however, this
new problem de�nition applies to various other problems in
document structural analysis. There are two advantages to our
approach. For one, it is more generic since it doesn't make
any strong assumptions about the structure and it is close to
how humans interpret tables, i.e. by matching data cells to
their headers. Secondly, it allows us to exploit graph neural
networks towards which there has been a lot of push lately.

In particular, we make the following contributions:
1) Formulate table recognition problem as a graph problem

which is compatible with graph neural networks
2) Design a novel differentiable architecture which reaps

the bene�ts of both convolutional neural networks for
image feature extraction and graph neural networks for
ef�cient interaction between the vertices

3) Introduce a novel Monte Carlo based technique to reduce
memory requirements of training

4) Fill the gap of large scale dataset by introducing a
synthetic dataset

5) Run tests on two state-of-the-art graph based methods
and emperically show that they perform better than a
baseline network

II. DATASET

There are a few datasets for table detection and structure
recognition published by the research community, includ-
ing UW3, UNLV [31] and ICDAR 2013 table competition
dataset [32]. However, the size of all of these datasets is
limited. It risks over�tting in deep neural networks and hence,
poor generalization. Many people have tried techniques such
as transfer learning but these techniques cannot completely
offset the utility of a large scale dataset.

We present a large synthetically generated dataset of 0.5
Million tables divided into four categories, which are visual-
ized in Figure 1. To generate the dataset, we have employed
Firefox and Selenium to render synthetically generated HTML.
We note that synthetic dataset generation is not new and
similar work [2] has been done before. Even though it will
be hard to generalize algorithms from our dataset to the real
world, the dataset provides a standard benchmark for studying
different algorithms until a large scale real-world dataset is
created. We have also published our code to generate further
data, if required.

III. T HE GRAPH MODEL

Considering the problem of table recognition, the ground
truth is de�ned as three graphs wherein every word is a vertex.
There are three adjacency matrices representing each of the
graphs, namely cell-, row-, and column-sharing matrices. So
if two vertices share a row i.e. both words belong to the same
row, these vertices are taken to be adjacent to each other
(likewise for cell and column sharing).

The prediction of a deep model is also done in the form of
the three adjacency matrices. After getting adjacency matrices,
complete cells, rows and columns can be reconstructed by
solving the problem of maximal cliques [33] for rows and
columns and connected components for cells. It is pictorially
shown in Figure 3.

This model is valid not only for table recognition problem
but can also be used for document segmentation. In that
scenario, if two vertices (could be words again) share the
same zone, they are adjacent. The resultant zones can also
be reconstructed using the maximal clique problem.

Fig. 3: Reconstructing the resultant column and row segments using
maximal cliques. The upper �gure shows column cliques while the
bottom one shows row cliques. Note the merged vertex in both of
these �gures which belongs to multiple cliques.

IV. M ETHODOLOGY

All of the tested models follow the same parent pattern,
shown in Figure 2, divided into three parts: the convolutional
neural network for extraction of image features, the interaction
network for communication between the vertices, and the
classi�cation part to label every paired vertices as being
adjacent or not adjacent (class 0 or class 1) in each of the
three graphs.

The algorithm for the forward pass is also given in Al-
gorithm 1. It takes the image (I 2 Rh� w � c — where h,
w and c represent height, width and number of channels in
the input image respectively), positional features (Fp 2 Rv� 4

— wherev represents number of vertices), and other features
Fo 2 Rv� o. In addition to this, it also takes the number of sam-
ples per vertex(s 2 R) and three adjacency matrices (Acells 2
f 0; 1gv� v , A rows 2 f 0; 1gv� v and Acols 2 f 0; 1gv� v) as the
input during the training process. All the parametric functions
are denoted byf and non-parametric functions byg. If all the
parametric functions are differentiable, the complete architec-
ture will be differentiable as well and hence, compatible with
backpropagation.

The positional features include the coordinates of the upper
left and the bottom right corner of each vertex. Other features
consist only of the length of the word in our case. However,
in a real-world dataset, natural language features [34] could
also be appended which may provide additional information.

1) Convolutional neural network:A convolutional neural
network (f conv) takes an image (I) as its input and as the
output, it generates the respective convolutional features (I f 2
Rh0� w 0� q — w0, h0 andq being the width, height and number
of channels of the convolutional feature map respectively).
To keep parameter count low, we have designed a shallow
CNN; however, any standard architecture can be used in its
place. At the output of CNN, a gather operation (ggather)
is performed to collect convolutional features for each word
corresponding to its spatial position in the image and form
gathered features(Fim 2 Rv� q). Since convolutional neural
networks are translation equivariant, this operation works well.
If the spatial dimensions of the output features are not the
same as the input image (for instance, in our case, they
were scaled down), the collect positions are linearly scaled
down depending on the ratio between the input and output
dimensions. The convolutional features are extended to the
rest of the vertex features (gext).

2) Interaction: After gathering all the vertex features, they
are passed as input to the interaction model (f int). We have
tested two graph neural networks to use as the interaction part
which are the modi�ed versions of [35] and [36] respectively.
These modi�ed networks are referred to as DGCNN* and
GravNet* hereafter. In addition to these two, we have also
tested with a baseline dense net (dubbed FCNN for Fully
Connected Neural Network) with approximately the same
number of parameters to show that the graph-based models
perform better. For these three models, we have limited the
total parameter count to1M for a fair comparison. This
parameter count also includes parameters of preceding CNN
and the succeeding classi�cation dense network. As the output,
we get representative features (Frep 2 Rv� r — r being the
number of representative features) of each of the vertex which
are used for classi�cation.

3) Runtime pair sampling:Classifying every word pair is
a memory intensive operation with memory complexity of
O(N 2). Since it would then scale linearly with the batch size,
the memory requirements increase even further. To cater to
this, we employed a Monte Carlo based sampling. The index
sampling function is denoted bygsample . this function would
generate a �xed number of samples (s) for each of the vertex
for each of the three problems (cell sharing, row sharing and
column sharing).

Uniform sampling is highly biased towards class 0. Since
we can't use a large batch size due to the memory constraints,
the statistics are not suf�cient to differentiate between the two
classes. To deal with this issue, we changed the sampling
distribution (Psamples) to sample, on average, an equal number
of elements of class 0 and class 1 for each of the vertex.
It can be easily done in a vectorized fashion as shown in
Algorithm 1. Note thatJ in the algorithm denotes an all-
one matrix. Different sets of samples are collected for each
of the three classes for each of the vertex (Scells 2 Zv� t ,
Srows 2 Zv� t , Scols 2 Zv� t). The values in these matrices
represent the index of the paired samples for each of the vertex.
For inference, however, we do not need to sample since we

don't need to use the mini-batch approach. Hence, we simply
do it for every vertex pair. So, during training,t = s and
during inference,t = v.

Algorithm 1 Forward Pass

Input I; F p; Fo; (Acells ; A rows ; Acols ; s)2

OutputL cells ; L rows ; L cols

1: function PAIR SAMPLING(A, s)
2: Psamples 0:5 � (1 � A) � ((1 � A) � Jv;v) �� 1

3: Psamples Psamples + 0 :5 � A � (A � Jv;v) �� 1

4: return gsample (Psamples ; s)

5: I f f conv (I)
6: Fim ggather (I f ; Fp)
7: Fcat gconcat (Fim ; Fo; Fp)
8: Fint f int (Fcat)
9: if training then

10: Scells PAIR SAMPLING(Acells ; s)
11: Srows PAIR SAMPLING(A rows ; s)
12: Scols PAIR SAMPLING(Acols ; s)
13: else
14: Scells Srows Scols [x i;j]v;v j x i;j = j

15: L cells f cells (Scells ; Fint)
16: L rows f rows (Srows ; Fint)
17: L cols f cols (Scols ; Fint)

4) Classi�cation: After sampling, the elements from the
output feature vector (Fint) of the interaction model and the
elements from the sampling matrices are concatenated (gcat)
with each other in (f cells , f rows , and f cols). These functions
are parametric neural networks. As the output, we get three
sets of logitsL cells 2 Rv� t � 2, L rows 2 Rv� t � 2 andL cols 2
Rv� t � 2. They can be used either to compute the loss and
backpropagate through the function, or to predict the classes
and form the resultant adjacency matrices.

V. RESULTS

Shahab et al [37] de�ned a set of metrics for detailed
evaluation of the results of table parsing and detection. They
de�ned criteria for correct and partial detection and de�ned
a heuristic for labeling elements as under-segmented, over-
segmented and missed. Among their criterion, two are the
most relevant to our case, i.e. the percentage of the ground
truth elements that are detected correctly (true positive rate)
and the number of the predicted elements which do not have a
match in the ground truth (false positive rate). In our case, as
argued in Section III, the elements are cliques. So true positive
rate and false positive rate is computed on all three graphs
(cells, rows and columns) individually. This rate is averaged
over the whole test set. These results are shown in Table I and
Table II.

In addition to this, we also introduce another measure, i.e.
perfect matching as shown in Table III. If all of the three
predicted adjacency matrices are perfectly matched with the

2Only needed for training

	Introduction
	Dataset
	The graph model
	Methodology
	Convolutional neural network
	Interaction
	Runtime pair sampling
	Classification

	Results
	Conclusion and future work
	References

