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Abstract

We present an algorithm for automatic detection of a

large number of anthropometric landmarks on 3D faces.

Our approach does not use texture and is completely shape

based in order to detect landmarks that are morphologically

significant. The proposed algorithm evolves level set curves

with adaptive geometric speed functions to automatically

extract effective seed points for dense correspondence. Cor-

respondences are established by minimizing the bending en-

ergy between patches around seed points of given faces to

those of a reference face. Given its hierarchical structure,

our algorithm is capable of establishing thousands of cor-

respondences between a large number of faces. Finally, a

morphable model based on the dense corresponding points

is fitted to an unseen query face for transfer of correspon-

dences and hence automatic detection of landmarks. The

proposed algorithm can detect any number of pre-defined

landmarks including subtle landmarks that are even diffi-

cult to detect manually. Extensive experimental compari-

son on two benchmark databases containing 6, 507 scans

shows that our algorithm outperforms six state of the art

algorithms.

1. Introduction

Due to the non-invasive nature of shape acquisition, 3D

morphometric analysis based on facial landmarks is becom-

ing a tool of choice in the fields of anthropometry, human

biology and medicine [21]. Scientists have used manually

annotated landmarks to ascribe an objective score to the

facial gender [17], for syndrome delineation [3, 5, 19, 30],

craniofacial analysis for sleep apnoea [2, 14, 24] and many

related fields. Scanners are being installed at many hos-

pitals and medical research centers to routinely collect 3D

face scans of patients [30]. For example, the Facebase Con-

sortium [23] contains thousands of 3D face scans. Similarly,

the Raine database [26] contains hundreds of 3D face scans

of individuals with different syndromes as well as controls.

Both of these databases are under active development with

new scans being constantly added.

Figure 1. Our algorithm automatically detects an arbitrarily large

number of facial landmarks by establishing dense correspondences

between 3D faces. The figure shows 85 landmarks detected

(red) on neutral and extreme anger expression of a subject from

BU3DFE database [43]. The ground truth is represented by blue

dots.

A major bottleneck in large-scale 3D facial morphomet-

ric analysis is the manual annotation of biologically signifi-

cant landmarks [15], which is not feasible because of three

reasons: 1) it is a laborious and time consuming process,

2) it requires training to master annotation and the anno-

tations may still contain inter and intra operator errors, 3)

soft tissue biological landmarks are quite subtle and almost

impossible to accurately annotate manually on the 3D scan.

These factors are limiting research on huge datasets [23,26],

or where the number of required landmarks is large. Thus,

there is an urgent need for a robust technique that is able to

automatically detect a large number of biologically signifi-

cant landmarks.

Current landmarking techniques have focused on a

sparse set of facial landmarks and detect these landmarks

by exploiting their intrinsic characteristics. Nair and Cav-

allaro [29] created a Point Distribution Model (PDM) from

49 manually annotated points on 150 scans of BU3DFE [43]

database. The statistical model was then fitted on the rest of

the faces of the same database to detect these landmarks.

Although the method works well in the presence of noisy

data, the mean error in the localization of landmarks was
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rather high. Furthermore, the model requires an initial man-

ual landmarking of a significant number of points and is not

designed to detect any new landmarks. Lu and Jain [25]

presented a multimodal approach for facial feature extrac-

tion. Using a face landmark model, the authors detected

seven facial landmarks on 3D faces using shape index from

range images and cornerness from intensity images. The al-

gorithm is specific to this sparse set of landmarks without

the possibility of detecting any further points.

Segundo et al. [39] used a curve analysis approach for

landmark detection in 3D faces of the FRGCv2 [36] and

BU3DFE databases. They extracted features from the mean

and Gaussian curvatures for detecting five facial landmarks

around the nose and eye (high curvature) regions. Gupta et

al. [18] proposed a sequential heuristically driven automatic

landmark detection algorithm for face recognition. The au-

thors detected ten anthropometric landmarks on 1, 149 3D

faces of the Texas 3D Face Recognition Database. Each

face is assumed to be in neutral pose and expression. Both

these algorithms are dependent on the intrinsic shape prop-

erties of a very small set of landmarks.

Creusot et al. [11] presented a machine learning ap-

proach to detect 14 corresponding landmarks in 3D faces.

They trained an off-line LDA classifier on a set of 200 faces

and a landmark model using 16 different local descriptors.

The descriptors are curvature based and specific to the 14
landmarks. Each landmark detection is then reduced to a

two class classification problem and the final result is fused.

The method works well for neutral expression faces of the

FRGCv2 and Bosphorus databases. Perakis et al. [32] pro-

posed a method to detect landmarks under large pose varia-

tions using a statistical Facial Landmark Model (FLM) for

the full face and another two FLMs for each side of the face.

A combination of Shape Index and Spin Images is used to

find key points on the face. Fiducial landmarks were deter-

mined on the basis of minimum combined normalized Pro-

crustes and Spin Image similarity distance from all three

FLMs. This method was used to detect eight correspon-

dences in the FRGCv2 database.

We cast the problem of facial landmarking as a sub-

problem of 3D dense correspondence. This enables us to

detect a large number of fiducial landmarks. The challenge

of establishing dense correspondence is to find a mapping

of a significant number of points on one surface to their

equivalent points on the second surface. The 3D shapes

generally have non-linear surface dissimilarities, making

sparse correspondence insufficient for landmark localiza-

tion. The challenge is further compounded by the unavail-

ability of the ground-truth shape correspondence. Dense 3D

shape correspondence has many applications in computer

graphics, statistical shape analysis and shape phenotyping.

In the context of 3D face analysis, dense correspondences

have been used for facial morphometric measurements such

as asymmetry for syndrome diagnosis [19, 20], statistical

shape modelling [12, 13, 22], shape interpolation [4], non-

rigid shape registration [1, 9, 10], deformation analysis [28]

and face recognition [7, 16, 31, 37].

Our method proceeds by evolving level set geodesic

curves on each 3D facial surface and samples farthest lo-

cation points [34]. These sample points are then mapped to

their corresponding points on a reference 3D face by match-

ing the surface around each point. A cost function defined

over bending energy is minimised to select the best cor-

responding points. Finally, a morphable model based on

the dense corresponding points is fitted to an unseen query

face for transfer of correspondences. Figure 2 illustrates

the complete algorithm. Our algorithm is hierarchical and

evolves level set curves with adaptive speeds to detect even

the most subtle feature points.

Our key contributions are the following. (1) Unlike ex-

isting methods, our algorithm is not designed for detecting

specific landmarks that have discriminative geometric prop-

erties. Instead, we can detect any number of pre-defined

landmarks including subtle landmarks that are difficult to

detect manually or with feature matching algorithms. (2)

We combine level set curve evolution with geometric speed

functions to automatically extract effective seed points for

dense correspondence. (3) With a hierarchical structure, our

algorithm is capable of extracting thousands of correspond-

ing points on a large set of faces.

We have performed extensive experiments on publicly

available FRGCv2 and BU3DFE databases and have com-

pared our results with six state-of-the-art methods. Exist-

ing methods have reported results on different number of

landmarks, ranging from 6 to 14. Our method has achieved

lower mean localization error than the competing methods

on all of those landmarks. Furthermore, we report, for

the first time, landmark localization on all 83 ground-truth

points provided with the BU3DFE dataset.

2. Proposed Algorithm

The block diagram of our proposed algorithm is given

in Figure 2 while the individual components are explained

below.

2.1. Pre-processing

The nose tip of a 3D face is detected automatically fol-

lowing Mian et al. [27]. Centring a sphere of 90�� at the

nose tip, the face is cropped and its pose is corrected to

a canonical form by registering the 3D face to a template

mask. During registration, the nose tips are aligned after

translation and then the 3D face is allowed to rotate only.

We observed that this strategy gives a better alignment and

ensures that all the 3D faces in the database have the same

frontal pose. Figure 3 shows the results of preprocessing on

four identities of FRGCv2 dataset.
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Figure 2. Block diagram of the proposed algorithm. Level set curves are evolved with adaptive speed functions to find seed points

on preprocessed face scans. Seed points are matched by minimizing the bending energy of their neighbourhood patches to find dense

correspondences. A deformable model is then constructed and fitted to unseen faces to transfer correspondences and hence landmarks.

Figure 3. Preprocessing shown on four identities of FRGCv2

database. The upper row corresponds to the raw 3D image with

texture while the lower one is the output of our preprocessing step.

2.2. Adaptive Sampling with Level Set Curves

The point cloud of each 3D face is given as F� =
[��, ��, ��]

� , where � = 1, . . . , � and � = 1, . . . , �� .

The level set interface [40, 41] at point � is represented by

�(�) = 0 and ∣�(�)∣ gives the shortest distance from this

point to the boundary � = 0. The level set equation is given

by,

�� + ℱ∇∣�∣ = 0 (1)

where ℱ is the propagation speed of the interface front. If

the speed function ℱ > 0, (1) can be alternatively formu-

lated by the arrival function �. The value of �(�) represents

the time for the interface to reach a point � from its initial

location, giving the Eikonal equation:

∣∇�∣ℱ = 1 (2)

We solve the Eikonal equation numerically using the Fast

Marching [34] method by the first order up-winding and

discretize it as under:

⎡
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where �− is the backward difference operator in the given

direction, �+ is the forward difference operator while �, �

and � are the basis on an orthogonal grid.

The speed function ℱ sets the speed of propagation of

the font and hence the density of point sampling. We per-

form adaptive sampling of the 3D face F� by using two sep-

arate speed functions; a curvature dependent and a uniform

function. The mean curvature � is given by [35],

� = ∇.
∇�
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=
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The two principle curvatures at each point � are related

to the Mean and Gaussian curvatures such that �1 = �� +√
�2

� −�� and �2 = �� −
√

�2
� −��. The Curvedness

at each point is a function of the two principles curvatures

and is defined as:

� =

√
�2
1 + �2

2

2
(4)

We use the Curvedness property of the points on 3D face

and define the curvature dependent speed function as under,

ℱ1 =

{
1 ��� � > (�̄ + ��)

0 otherwise.
(5)

The speed function ℱ1 slows down the propagation of the

front in areas of high curvature (Figure 4 row-1). In or-

der to sample 3D points from quasi-planar regions, we use

the uniform speed function, ℱ2 and set its value to 1 at

every point on the 3D face. Consequently, we evolve two

level set curves with ℱ1 and ℱ2 and perform farthest point

adaptive sampling [33] of each 3D face F� to obtain F̃1
� =

[��, ��, ��]
� (� = 1, . . . , �ℱ1) and F̃2

� = [��, ��, ��]
�

(� = 1, . . . , �ℱ2) pertaining to the two speed functions ℱ1

and ℱ2 respectively. Note that �ℱ1 and �ℱ2 are user de-

fined number of sampled points, (�ℱ1, �ℱ2) < min(��)

and (F̃1
� , F̃

2
� ) ∈ F� . This means that the desired number

of corresponding points can be controlled. In fact, by in-

creasing the value of �ℱ1, we can choose to detect more

correspondences in high curvature regions and by increas-

ing the value of �ℱ2, we will detect more correspondences

in low curvature regions.

The 3D points F̃2
� sampled using the uniform speed func-

tion ℱ2 cover the entire 3D face uniformly (see Figure 4

row-2) which include the discriminative points with high

curvature as well as the non-discriminative ones that lie on

planar surfaces. Since, F̃1
� already covers the highly dis-

criminative 3D points to be used later for surface matching

(discussed in Section 2.3), we aim to to exclude them from

F̃2
� . This is done by removing all points pertaining to F̃1

�

from each 3D face F̃2
� , such that F̃2

� = F̃2
� − (F̃2

�

∩
F̃1

� ).
Figure 4 shows the adaptively sampled points on the pre-

processed faces of five identities of FRGCv2. The top row

shows points pertaining to F̃1
� , the middle row shows the

points for F̃2
� while the last row depicts the points for the

reduced F̃2
� .

2.3. Coarse to Fine Surface Matching for Dense
Correspondence

The adaptively sampled points F̃1
� and F̃2

� are not in cor-

respondence yet. The goal of coarse surface matching is to

Figure 4. Adaptively sampled points on the pre-processed faces of

five identities of FRGCv2. The top row shows points pertaining

to F̃
1

� , the middle row shows the points for F̃2

� while the last row

depicts the points for the reduced F̃
2

� .

find a reasonable mapping of points between the 3D faces

F̃1
� . We first select one of the faces from the training set

as the source and find its correspondence to the rest of the

database in a pair wise scheme. We start by cropping a sur-

face S� of radius �� around each point � on the sampled

source face. Note that while � is selected from the sampled

face F̃1
� , the surface is cropped from the pre-processed in-

put face F� . This ensures a rich sampling of points in the

surface.

The task at hand now is to find the correspondence be-

tween a point � on source face to a point � on a given target

face. This can be done by matching the surface S� with sur-

faces extracted around every point in the target. However,

this step would be both redundant and computationally ex-

pensive. Since all faces in the database are centred at their

nose tips, it can be assumed that the point � on a target face

corresponding to the point � on source face can be found on

the target face within a small region R around �. We empir-

ically choose a conservatively large radius of 4�� (roughly

a quarter of the 3D face) for the region R and we select

all sampled points on the target face within this region. We

then crop out surfaces S� of radius �� around each point in

R. Next we measure the non-rigid shape difference Δ(�, �)
between the source surface S� and each target surface S� in

R. The shape difference is given by;

Δ(�, �) =
��� + ���

2
(6)

Here, ��� is the amount of bending energy required to de-

form S� to S� and is measured using the 2D thin-plate spline

model [8]. The bending energy can be calculated as,

�(�, �) = x�Ωx+ y�Ωy + z�Ωz (7)

where x, y and z are the vectors containing the �, � and �

coordinates of � points in the target surface S� and Ω is the
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Figure 5. 3D deformable model fitting to four identities from the

FRGCv2 database. First row contains the original scans while the

second row contains the fitted models.

bending matrix. It is defined as the �×� upper left matrix

of

[
K B

B� 0

]−1

.

Here B = [1, x̂, ŷ, ẑ], where x̂, ŷ and ẑ are the �,� and �

coordinates of � points on the source surface S�, �(�, �) =
∣∣s�� − s��∣∣

2 ���∣∣s�� − s��∣∣ with �, � = 1, . . . ,� and 0 is

an � × 4 matrix of zeros. Since, �(�, �) and �(�, �) are

not equal, their average gives the non-rigid shape difference

between the two surfaces.

We say that a point � within R coarsely corresponds to

point � in S� if the shape difference Δ(�, �) in their corre-

sponding patches is minimum. To find a finer correspon-

dence between the two points we repeat the surface match-

ing process between the point � on source face and all points

within radius �� of the coarse corresponding point � on

the pre-processed target face. We have empirically found

�� = 5�� to be a good choice for this search space. Cor-

respondence between all 3D faces F̃1
� are established by

repeating the coarse to fine surface matching process for

all points �ℱ1. The output of this step is a set of corre-

sponding faces F̃�
� = [��, ��, ��]

� , where � = 1, . . . , �

and � = 1, . . . , �ℱ1.

The coarse to fine surface matching establishes corre-

spondence between the 3D faces in regions of high cur-

vature. We now present a hierarchical scheme to propa-

gate this correspondence further and establish dense corre-

spondence between the 3D face using the uniformly sam-

pled non-descriptive points F̃2
� . We first select a source

and a target face and register them using the correspond-

ing points F̃�
� . The same transformation is used to register

the F̃2
� points of source face to those of the target. Next,

all points in F̃2
� on the two faces in the pair are projected

on a 2� grid and the correspondences are transferred from

the source to the target face. This ensures speedy propa-

gation of correspondences with minimum localization er-

ror. These new correspondences are updated in F̃�
� to give

F�
� = [��, ��, ��]

� , where � = 1, . . . , � and � = 1, . . . , � .

2.4. Model Fitting and Landmark Localization

The output of surface matching step is a set of �

densely corresponding faces, F�
� which form a 3D De-

formable Model (3DM), Ψ = [f �1 , f
�
2 , . . . , f

�
� , ], where f � =

[�1, . . . , ��, �1, . . . , ��, �1, . . . , ��]
� and � = 1, . . . , � .

The row mean �Ψ of the 3DM is given by,

�Ψ =
1

�

�∑

�=1

f �� (8)

Without loss of generality, assume that the row means of

Ψ� are all 0. The 3DM Ψ� can be modelled by a multi-

variate Gaussian distribution and its eigenvalue decomposi-

tion is given by,
USV� = Ψ� (9)

where US are the principal components (PCs), and the

columns of � are their corresponding loadings. S is a diag-

onal matrix of eigenvalues and we retain 98% of the energy

corresponding to the first � columns of U. Furthermore, the

mean face of the 3DM is given by F� =
1

�

�∑
�=1

F�
� .

We deform the statistical model given in (9) into a query

face Q which is first registered and roughly corresponded

to the mean face F� by searching for the Nearest Neigh-

bour (NN) of each point of F� in Q using the k-d tree

data structure [6]. After vectorization, the query face can

be parametrized by the statistical model such that m� =
U� + �Ψ, where the vector � contains the parameters

which are used to vary the shape of the model and m� is

the vectorized form of the query model M� generated by

the 3DM. The vector � is given by,

� = U� (q� − �Ψ) (10)

where q� is the vectorized corresponded query face.

Finally, dense correspondence is propagated to the query

face Q by registering it to M� . This is done by minimizing

the distance between NN points (rigid transformation), then

deforming the model using Equation (10) (non-rigid morph-

ing) and a final NN search to transfer the correspondences.

We manually annotate an arbitrary set of landmarks on F�

and transfer them to the query model M� since the point

clouds of both 3D faces correspond to each other. Note that

the manual annotation is done only once and that too on F�

only. Figure 5 shows the 3DM fitted to four identities of the

FRGCv2 database.

3. Results and Analysis
We have performed extensive landmarking experiments

on FRGCv2 [36] and BU3DFE [43] databases because they

are readily available, have considerable variation in ethnic-

ity, age, pose and expression and also because benchmark-

ing is possible due to the availability of ground truth land-

marks. FRGCv2 contains 4, 007 scans of 466 individuals.

Manual annotations provided by Szeptycki et al. [42] and

Creusot et al. [11] were used as ground truth for compari-

son. The BU3DFE dataset comprises of 2, 500 scans of 100
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Table 1. Comparison of the mean and standard deviation of localization error �� (in mm) with the state-of-the-art algorithms on FRGCv2

dataset. A ‘-’ denotes that the authors did not detect this particular landmark.

Author Lu et al. [25] Segundo et al. [39] Perakis et al. [32] Creusot et al. [11] This Paper

#Images 676 4007 975 4007 4007

�� Mean SD Mean SD Mean SD Mean SD Mean SD

Ex(L) 9.50 17.10 - - 5.58 3.33 5.87 3.11 4.50 2.97

En(L) 8.30 17.20 3.69 2.26 4.15 2.35 4.31 2.44 3.12 2.09

N - - - - - - 4.20 2.07 3.63 2.02

Ex( R ) 10.30 18.10 - - 5.83 3.42 6.00 3.03 3.74 2.79

En( R) 8.20 17.20 3.35 2.33 4.41 2.49 4.29 2.03 2.73 2.14

Prn 8.30 19.40 2.73 1.39 4.09 2.41 3.35 2.00 2.68 1.48

Ac(L) - - 4.83 2.03 - - 4.73 3.68 3.66 2.18

Ac ( R) - - 5.84 1.73 - - 4.86 3.54 3.43 1.80

Ch( L) 6.00 16.90 - 5.56 3.93 5.47 3.45 5.31 2.05

Ch( R) 6.20 17.90 - 5.42 3.84 5.64 3.58 4.38 2.08

Ls - - - - - - 4.23 3.21 3.31 2.65

Li - - - - - - 5.46 3.92 4.02 3.80

Pg - - - - 4.92 3.74 7.28 7.41 3.95 3.27

Sn - - - - - - 3.67 3.11 4.05 3.08

Ps(R) - - - - - - - - 4.01 2.71

Pi(R) - - - - - - - - 3.10 1.97

Ps(L) - - - - - - - - 3.85 2.68

Pi(L) - - - - - - - - 2.98 2.18

Mean 8.11 17.69 4.09 1.95 5.00 3.19 4.95 3.33 3.69 2.44

Table 2. Comparative results of our proposed algorithm with SISI-NPSS [32] reported on the identities defined in DB00F [32]. Our dense

correspondence algorithm is able to localize all landmarks with a lower error.

Expression Neutral (n=443) Mild (n=355) Extreme (n=177) All (n=975)

Method SISI-NPSS This Paper SISI-NPSS This Paper SISI-NPSS This Paper SISI-NPSS This Paper

�� Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Ex(R) 5.38 3.14 3.80 2.78 5.76 3.42 4.43 3.31 5.71 3.57 4.19 3.01 5.58 3.33 4.10 3.04

EN(R) 3.95 2.19 3.24 2.16 4.28 2.35 3.04 2.25 4.38 2.68 3.60 2.63 4.15 2.35 3.23 2.29

En(L) 4.37 2.51 2.61 1.78 4.48 2.33 2.76 1.98 4.40 2.74 3.13 2.41 4.41 2.49 2.76 1.99

Ex(R) 5.66 3.37 3.54 2.69 5.95 3.38 3.70 2.89 6.02 3.59 3.56 2.58 5.83 3.42 3.60 2.74

Prn 3.99 2.24 2.37 1.98 3.92 2.06 2.75 2.48 4.67 3.25 3.25 3.32 4.09 2.41 2.67 2.47

Ch(R) 4.25 2.30 4.08 2.33 5.36 3.10 5.28 2.96 9.26 5.88 7.39 4.74 5.56 3.93 5.12 3.34

Ch(L) 4.35 2.40 3.43 2.31 5.21 3.14 4.21 3.07 8.55 5.87 6.41 3.87 5.42 3.84 4.25 3.12

Pg 4.21 2.36 3.97 2.38 4.66 2.70 4.32 2.61 7.27 6.45 4.19 3.01 4.92 3.74 4.10 3.04

Mean 4.52 1.51 3.38 0.94 4.95 1.46 3.81 1.28 6.28 2.60 4.46 1.77 5.00 1.85 3.72 1.15

individuals. Each subject has been imaged in neutral and six

different expressions each having four intensity levels. The

dataset comes with a ground truth of 83 manually annotated

corresponding points. The ground truth is devoid of Nasion

(N) and the Pronasale (Prn). We have manually added them

to the ground truth bringing the total to 85.

Using our presented algorithm, it is possible to estab-

lish dense correspondence on all 4, 007 scans of FRGCv2

database, in a pair wise manner. However, we constructed

a dense morphable model from the first available neutral

scan of the first 200 identities of FRGCv2. This model was

then fitted to all the scans of the remaining 266 identities

(1, 961 in total) in order to test the quality of dense cor-

respondence and the fitting procedure. To perform experi-

ments on the rest of the database, we constructed a separate

model from the neutral scans of the next 200 identities and

used all the scans (2, 046) corresponding to the first training

set as probes. In this way we report Landmark Detection

results on all 4, 007 scans of FRGCv2, ensuring that the

identities in the gallery and probe sets are disjoint.

We annotated 18 biologically significant anthropometric

landmarks [15] on the mean face F� of both models. These

landmarks were then projected back on each 3D face and

we report the mean of landmark localization error (��) in

millimetres (mm). Table 1 shows the mean and standard

deviation of �� over 18 landmarks as well as a compari-

son with the state-of-the-art algorithms on the same dataset.

Note that Creusot et al. [11] tested their algorithm on 4, 750
images and provide results for each individual. For compar-

ison, we select the same 4, 007 faces that were used in this

paper. It is evident from the results that our proposed algo-

rithm performs better than its counterparts. A histogram of

error distribution, separately for the neutral and non-neutral

scans of FRGCv2, is shown in Figure 6.
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Figure 6. Histogram of mean localization error for 18 landmarks

on 4,007 scans of FRGCv2 dataset (18× 4007 Landmarks).

Table 3. Comparison of landmark localization results with the

state-of-the-art on BU3DFE dataset.

Author Nair et al. [29] Segundo et al. [39] Salazar et al. [38] This Paper

#Images 2350 2500 350 2500

�� Mean Mean SD Mean SD Mean SD

Ex(L) 20.46 - - 9.63 6.12 4.43 2.74

En(L) 12.11 6.33 4.82 6.75 4.54 4.75 2.64

N - - - - - 3.50 2.70

Ex( R ) 19.38 6.33 5.04 8.49 5.82 4.35 2.70

En( R) 11.89 - - 6.14 4.21 3.29 2.67

Prn 8.83 1.87 1.12 5.87 2.70 2.91 2.03

Ac(L) - 6.66 3.36 6.47 3.30 4.30 2.73

Ac ( R) - 6.49 3.40 7.17 3.07 4.28 2.71

Sbal(L) - - - - - 4.86 2.80

Sbal(R) - - - - - 3.57 2.59

Sn - - - - - 3.90 3.26

Ch( L) - - - - - 6.00 3.94

Ch( R) - - - - - 5.45 3.12

Ls - - - - - 3.20 2.68

Li - - - - - 6.90 5.31

Mean 14.53 5.54 3.55 7.22 4.25 4.38 2.98
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Figure 7. Error distribution histogram of 85 landmarks on 2, 500

scans of BU3DFE dataset (83×2500 Landmarks). Notice that the

mean error for majority of landmarks on neutral expression is less

than 2��.

Perakis et al. [32] reported their landmarking results us-

ing the SISI-NPSS algorithm on neutral, mild and extreme

expression scans of FRGCv2. Since their experimental pro-

tocol is available on-line, we have compared our results

with them on matching identities and show the compari-

son in Table 2. Note that the authors used 300 scans with

varying expressions to train their models whereas we have

used only 200 neutral expression scans to generate the dense

correspondence model. Our mean localization error for the

eight selected landmarks is 3.72�� in contrast to 5�� as

reported by [32].

From a practical perspective, it may not always be possi-

Figure 8. Effects of expression on landmark localization. The six

expressions of BU3DFE dataset are shown in the columns while

the rows depict the increasing intensity levels. The error distribu-

tion of 12 landmarks for the four intensity levels is shown in the

last row. The error is maximum in expressions which involve gap

in the lips.

ble to generate dense correspondence models from the data

set available at hand. In such scenarios, it would be bene-

ficial to fit an existing dense correspondence model to the

available query faces. The outcome of landmark detection

in this case would depend on the quality of dense correspon-

dence of the original model. We have used the BU3DFE

database to test this feature of our dense correspondence

model. The model is created from the first available neutral

scan of the first 200 identities of FRGCv2 and fitted to each

3D face from the BU3DFE dataset. Note that the FRGCv2

images were acquired from the MinoltaTM scanner while the

BU3DFE images were acquired using the 3DMDFaceTM

system.

As mentioned earlier, 85 manually annotated ground

truth points are available for the BU3DFE dataset. We an-

notated the 85 points on the mean face of our morphable

model and projected them back on each 3D face to calcu-

late the mean localization error. Our proposed algorithm is

able to localize the 85 ground truth points on the complete

dataset within 5.85± 4.26��. The mean and standard de-

viation of localization error of each point is given in the ac-

companied supplementary material. The histogram of error

distribution for each intensity level of the six facial expres-

sions is shown in Figure 7. The 85 landmarks annotated

on one of the subjects in extreme anger expression are de-

picted in Figure 1. In order to compare our results with the

state-of-the-art, we report the landmark localization results

on 15 anthropometric landmarks, in Table 3. To the best
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Figure 9. Thirty five anthropometric landmarks [15] automatically detected on seven identities of the FRGCv2 database. The top left face

gives the ground truth locations and names of these landmarks. Notice, the consistency and accuracy of detection.

of our knowledge, this is the highest number of automati-

cally detected anthropometric landmarks reported so far in

the literature.

The existing algorithms are landmark specific and

mostly driven by the intrinsic properties of these landmarks.

It is evident from the results that the landmarks which do

not display sharp curvature changes have a larger localiza-

tion error. In contrast, our proposed algorithm is not tuned

to a specific set of landmarks and this factor has contributed

to the superior quality of our results. Furthermore, since we

build a dense correspondence model over the complete 3D

face, we are able to detect any number of landmarks spe-

cific to the needs of the concerned research and application

community.

Another strength of our proposed approach is that we

present our results on the original data. Consequently, our

densely corresponding faces relate directly to the original

3D faces. We have established dense correspondence on the

first available neutral scans of the 466 identities of FRGCv2

and included their indices in the supplementary material.

These indices along with indices of densely corresponding

3D faces of BU3DFE dataset will be available on our web-

site for the benefit of researchers to instantly construct a

densely corresponding statistical model.

Figure 9 visually shows the detection results of 35 bi-

ologically significant anthropometric landmarks [15] on

seven identities of FRGCv2 database. It is pertinent to

mention that the 3D facial scans for medical research pur-

poses are from cooperative subjects and captured in neu-

tral expression. There is a subtle mild expression on the

faces of subjects suffering from certain syndromes, e.g.

Autism [3, 20, 30]. It is evident from Figure 9 that our pro-

posed algorithm is able to detect a large number of anthro-

pometric landmarks on neutral and mild expressions with a

reasonable accuracy. Objective evaluation of such a large

number of landmarks is not feasible due to lack of ground

truth and the challenge of manually annotating them on a

huge database. A visual inspection shows the superior qual-

ity of detection.

4. Conclusion

Automatic detection of a large number of anthropomet-

ric facial landmarks on huge 3D face databases is challeng-

ing. To date, a subset of these landmarks is being manu-

ally annotated on the 3D faces by researchers and medical

practitioners. We presented an algorithm for automatic de-

tection of an arbitrarily large number of facial landmarks.

We achieved this by establishing dense 3D face correspon-

dences by minimizing the bending energy between seed

points extracted by adaptive level set curves. Correspon-

dences and hence landmarks are transferred to unseen faces

by fitting a morphable model. Our results show that we not

only outperform the state-of-the-art in terms of landmark lo-

calization error for commonly detected landmarks, but also

reliably detect soft tissue landmarks on quasi-planar facial

regions that are even hard to annotate manually.
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