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ABSTRACT
Detecting tables in document images is important since not
only do tables contain important information, but also most
of the layout analysis methods fail in the presence of tables
in the document image. Existing approaches for table de-
tection mainly focus on detecting tables in single columns
of text and do not work reliably on documents with varying
layouts. This paper presents a practical algorithm for table
detection that works with a high accuracy on documents
with varying layouts (company reports, newspaper articles,
magazine pages, . . . ). An open source implementation of the
algorithm is provided as part of the Tesseract OCR engine.
Evaluation of the algorithm on document images from pub-
licly available UNLV dataset shows competitive performance
in comparison to the table detection module of a commercial
OCR system.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—Document Analysis

Keywords
page segmentation, table detection, document analysis

1. INTRODUCTION
Automatic conversion of paper documents into an editable
electronic representation relies on optical character recog-
nition (OCR) technology. A typical OCR system consists
of three major steps. First, layout analysis is performed
to locate text-lines in the document image and to identify
their reading order. Then, a character recognition engine
processes the text-line images and generates a text string
by recognizing individual characters in the text-line image.
Finally, a language modeling module makes corrections in
the text string using a dictionary or a language model.
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Since layout analysis is the first step in such a process, all
subsequent stages rely on layout analysis to work correctly.
One of the major challenges faced by layout analysis is de-
tecting table regions. Table detection is a hard problem
since tables have a large variation in their layouts. Existing
open-source OCR systems lack the capability of table de-
tection and their layout analysis modules break down in the
presence of table regions. A distinction should be made at
this stage between table detection and table recognition [8].
Table detection deals with the problem of finding bound-
aries of tables in a page image. Table recognition, on the
other hand, focuses on analyzing a detected table by finding
its rows and columns and tries to extract the structure of
the table. Our focus in this paper is on the table detection
problem.

One of the pioneering works on table detection and recogni-
tion was done by Kieninger et al. [11, 10, 12]. They devel-
oped a table spotting and structure extraction system called
T-Recs. The system relies on word bounding boxes as input.
These word boxes are clustered with a bottom-up approach
into regions by building a “segmentation graph”. These re-
gions are then designated as candidate table regions if they
satisfy certain criterion. The key limitation of the approach
is that based only on word boxes, multi-column layouts can
not be handled very accurately. Therefore it works well only
for single column pages.

Wang et al. [20] take a statistical learning approach for the
table detection problem. Given a set of candidate text-lines,
candidate table lines are identified based on gaps between
consecutive words. Then, vertically adjacent lines with large
gaps and horizontally adjacent words are grouped together
to make table entity candidates. Finally, a statistical based
learning algorithm is used to refine the table candidates and
reduce false alarms. They make the assumption that the
maximum number of columns is two and design three tem-
plates of page layout (single column, double column, mixed
column). They apply a column style classification algorithm
to find out the column layout of the page and use this in-
formation as a priori knowledge for spotting table regions.
This approach can handle only those layouts on which it
has been trained. Besides, training the algorithm requires a
large amount of labeled data.

Hu et al. [6] presented a system for table detection from
scanned page images or from plain text documents. Their
system assumes a single-column input page that can be eas-
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Figure 1: Output of different steps of Tesseract’s layout analysis module on a document image.

ily segmented into individual text-lines (for instance by hor-
izontal projection). The table detection problem is then
posed as an optimization problem where start and end text-
lines belonging to a table are identified by optimizing some
quality function. Like previous approaches, this technique
can not be applied to multi-column documents.

In [7] Hu et al. evaluated their table detection algorithm
on the UW-III dataset [5] by using ground-truth zone infor-
mation (deciding for each ground-truth zone whether it is
a table or not). This evaluation is not practical since seg-
menting a table as a single zone is actually the hard part of
a table detection system. This goes more into the direction
of document zone classification [21, 9] where the goal is to
assign each of the segmented document zones into a set of
pre-defined classes (text, math, table, half-tone, . . . ).

Cesarini et al. [2] present a system for locating table regions
by detecting parallel lines. The table hypothesis formed in
this way are then verified by locating perpendicular lines
or white spaces in the region included between the parallel
lines. However, relying only on horizontal or vertical lines
for table detection limits the scope of the system since not all
tables have such lines. More recent work in table detection
is reported by Gatos et al. [4] and Costa e Silva [3]. Gatos et
al. [4] focus on locating tables that have both horizontal and
vertical rulings and find their intersection points. Then, ta-
ble reconstruction is achieved by drawing the corresponding
horizontal and vertical lines that connect all line intersection
pairs. The system works pretty well for their target docu-
ments but can not be used when the tables rows/columns are
not separated by ruling lines. The work of Costa e Silva [3]
focuses on extracting table regions from PDF documents
using Hidden Markov Models (HMMs). They extract text
from the PDF using pdftotext Linux utility. The spaces in
the extracted text are used for computing the feature vector.
Clearly, this approach would not work for document images.

Summarizing the state of the art in table detection, we can
see a clear limitation of existing methods. The methods

do not work well on multi-column document images. This is
probably due to the fact that most of the existing approaches
focus on table recognition to extract the structure (rows,
columns, cells) of the tables and hence make some simplify-
ing assumptions on the table detection part. This approach
works well when one has to deal with some specific classes
of document images having simple layouts. However, more
robust table detection algorithms are needed when dealing
with a heterogeneous collection of documents. In this paper,
we try to bridge this gap. Our goal is to accurately spot ta-
ble regions in complex heterogeneous documents (company
reports, journal articles, newspapers, magazines, . . . ). Once
table regions are spotted, one of the existing table recog-
nition techniques (e.g. [10]) could be used to extract the
structure of the tables.

The rest of this paper is organized as follows. First, we
describe in Section 2 the layout analysis module of Tesser-
act [18, 19] that would be used as a basis of our table detec-
tion algorithm. Then, our table detection algorithm is illus-
trated in Section 3. Different performance measures used to
evaluate our system are presented in Section 4. Experimen-
tal results and discussion is given in Section 5 followed by a
conclusion in Section 6.

2. LAYOUT ANALYSIS VIA TAB-STOP DE-
TECTION

The layout analysis of Tesseract is a recent addition to the
open source OCR system [19]. It is based on the idea of
detecting tab-stops in a document image. When type-setting
a document, tab-stops are the locations where text aligns
(left, right, center, decimal, . . . ). Therefore, tab-stops can
be used as a reliable indication of where a text block starts or
ends. Finding the layout of the page via tab-stop detection
proceeds as follows (see Figure 1 for illustration):

• First, a document image pre-processing step is per-
formed to identify horizontal and vertical ruling lines
or separators and to locate half-tone or image regions
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Figure 2: The result of different steps of Tesseract’s layout analysis in the presence of table regions. Note that
the Column layout is not consistent in the two tables. Similarly, column partitions also sometimes merge text
across different table columns and sometimes keep them separate. This results in heavy over-segmentation
of the page image in table regions.

in the document. Then, a connected component analy-
sis is performed to identify candidate text components
based on their size and stroke width.

• The filtered text components are evaluated as candi-
dates for lying on a tab-stop position. These candi-
dates are grouped into vertical lines to find tab-stop
positions that are vertically aligned. As a final step,
pairs of connected tab lines are adjusted such that they
end at the same y-coordinate (see Figure 1(a)). At this
stage, vertical tab lines marks the start and end of text
regions.

• Based on the tab-lines, the column layout of the page
is inferred and connected components are grouped into
Column Partitions. A column partition is a sequence
of connected components that do not cross any tab
line and are of the same type (text, image, . . . ). Text
column partitions can be regarded as initial candidates
for text-lines(see Figure 1(b)).

• The last step creates flows of column partitions such
that neighboring column partitions of the same type
are grouped into the same block (Figure 1(c)). Text
column partitions having different font size and line
spacing are grouped into different blocks. Then, the
reading order of these blocks is identified. The bound-
ary of the blocks is represented as an isothetic polygon
(a polygon that has all edges parallel to the axes).

3. TABLE SPOTTING
Our table detection algorithm is built upon two components
of the layout analysis module:

1. Column partitions

2. Column layout

Column partitions give us connected components grouped
by their type into partitions that do not cross tab-stop lines.
Therefore, text column partitions approximate text-lines in
the document. Half-tone regions and horizontal black lines
(rulings) are reported as column partitions of “image” and
“horizontal line” type. Besides column partitions, column
layout gives us the information whether a particular column
partition lies completely within one column or is spanning
across multiple columns. As shown in Figure 2, both column
partition and column layout may give erroneous results in
the presence of table regions.

A further analysis of layout analysis results in the presence
of table regions shows two major scenarios. In the first case,
table columns are reported as page columns thereby destroy-
ing the columnar structure of the page. This happens partic-
ularly when table cells are very well aligned. The alignment
causes a large number of tab-stops to be detected and hence
the tab-lines are strong enough to report the presence of a
column. Each cell in the table is thereby reported as a sin-
gle column partition. In the second case, table columns are
ignored by the system due to cells that are not well aligned.
Hence, the columnar structure of the page is correctly iden-
tified. Column partitions in this case span across different
columns of the table. Both these cases are illustrated in the
example image in Figure 2. Based on this analysis, our table
detection algorithm is designed as follows.

3.1 Identifying Table Partitions
The first step in our algorithm identifies text column parti-
tions that could belong to a table region, referred to as table
partitions. Based on the observations mentioned in the pre-
vious paragraph, three types of partitions are marked as
table partitions: (1) partitions that have at lease one large
gap between their connected components, (2) partitions that
consist of only one word (no significant gap between com-
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Figure 3: The result of different steps of our table detection algorithm on a sample image.

ponents), (3) partitions that overlap along the y-axis with
other partitions within the same column. The first case iden-
tifies table partitions that result from merging cells from
different columns of a table into one partition. The second
case detects table partitions that consists of a single data
cell. The third case identifies table partitions that lie in one
column but were not joined together due to the presence of
a strong tab-line.

This stage tries to find table partition candidates quite ag-
gressively. This has the advantage that even small evidence
of the presence of a table is not missed, since any tables
that are missed at this stage will not be recoverable at later
stages. The disadvantage of the aggressive approach is that
several false alarms may originate, for instance from single
word section headings, page headers and footers, numbered
equations, small parts of text words in the marginal noise,
and line drawing regions. A smoothing filter is applied that
detects isolated table partitions that have no other table
partition neighbor above or below them. These partitions
are removed from the candidate table partition list. The
candidate table partitions for our example image are shown
in Figure 3(a).

3.2 Detecting Page Column Split
The next step is to detect split in the column layout of the
page due to the presence of a table. Such a split occurs when
the cells of the table are very well aligned. To detect this
case, we divide the page into columns and find the ratio of
table partitions in each column. Table columns that were
erroneously reported as page columns are easily detected
since they have a high ratio of table partition as compared
to normal text partitions. However, extra care needs to be
taken at this stage to undo a column split (i.e. to merge two
columns) since a wrong decision would result in merging two
text columns leading to a large numbers of errors in page
layout analysis itself.

Therefore, we undo a page column split only if sufficient

number of text partitions spanning the two columns are
present and the split in the columns starts with table par-
titions. This extra care prevents merging table columns in
full-page tables when there is no flowing text in the page.
Since the cost of a wrong decision here is very high in terms
of layout analysis errors we chose to perform this step de-
fensively.

3.3 Locating Table Columns
The goal of this step is to group table partitions into table
columns. For this purpose, runs of vertically neighboring
table partitions are assigned to a single table column. If a
column partition of type “horizontal ruling” is encountered,
the run continues. When a partition of any other type is
found, the table column obtained so far is finalized. If a table
column consists of only one table partition, it is removed as
a false alarm. The identified table columns for the example
image are shown in Figure 3(b).

3.4 Marking Table Regions
Table columns obtained in the previous steps give a strong
hint about the presence of a table in that region. We make a
simple assumption here: within a single page column, flow-
ing text does not share space with a table along the y-axis.
This assumption holds true for most of the layouts that we
encounter in practice since if a table shares space vertically
with flowing text, it is hard to see whether the text belongs
to the table or not. Based on this assumption, we horizon-
tally expand the boundaries of table columns to the page
columns that contain them. Hence we obtain with-in col-
umn table regions for each page column.

At this stage, tables that are laid out within one column are
correctly identified. However, tables spanning multiple page
columns are over-segmented. Although two table regions
in neighboring page columns could be merged if their start
and end positions align, this might wrongly merge different
tables in the two columns. Therefore a merge is carried out
only if at least one column partition of any type (text, table,
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Figure 4: An illustration of different performance measures used in this work. Each figure shows one type of
segmentation error that is quantified by the corresponding measure.

horizontal ruling) is found that overlaps with both tables.
Table partitions and horizontal ruling partitions that are
not included in any table and are directly above or below a
table region with a large overlap along the x-axis are also
included in the neighboring table. The table regions thus
obtained for the example image are shown in Figure 3(c).

3.5 Removing False Alarms
Although most of the false alarms originating from normal
text regions are removed in previous stages, other sources of
false alarms like marginal noise [17] and figures still remain.
Therefore the identified table regions are passed through a
simple validity test: a valid table should have at least two
columns. False alarms consisting of a single column are re-
moved by analyzing their projection on the x-axis. Pro-
jection of a valid table on the x-axis should have at least
one zero-valley larger than the global median x-height of
the page. Therefore, table candidates that do not have a
zero-valley in their vertical projection are removed.

4. PERFORMANCE MEASURES
Different performance measures have been reported in the
literature for evaluating table detection algorithms. These
range from simple precision and recall based measures [6,
13] to more sophisticated measures for benchmarking com-
plete table structure extraction algorithms [8]. In this paper,
since we are only focusing on table spotting, we use standard
measures for document image segmentation focusing on the
table regions. Hence in accordance with [13, 14, 16, 20] we
use several measures for quantitatively evaluating different
aspects of our table spotting algorithm.

Both ground-truth tables and tables detected by our algo-
rithm are represented by their bounding boxes. Let Gi rep-
resent the bounding box of ith ground-truth table and Dj

represent the bounding box of the jth detected table in a
document image. The amount of overlap between the two is
defined as:

A(Gi, Dj) =
2|Gi ∩Dj |
|Gi|+ |Dj |

(1)

where |Gi ∩ Dj | represents the area of intersection of the

two zones, and |Gi|, |Dj | represent the individual areas of
the ground-truth and the detected tables. The amount of
area overlap A will vary between zero and one depending
on the overlap between ground-truth table Gi and detected
table Dj . If the two tables do not overlap at all A = 0, and
if the two tables match perfectly i.e. |Gi∩Dj | = |Gi| = |Dj |,
then A = 1.

• Correct Detections: These are the number of ground-
truth tables that have a large overlap (A ≥ 0.9) with
one of the detected tables.

• Partial Detections: These are the number of ground-
truth tables that have a one-to-one correspondence
with a detected table, however the amount of over-
lap is not large enough (0.1 < A < 0.9) to be classified
as a correct detection (see Figure 4(a)).

• Over-Segmented Tables: These are the number of
ground-truth tables that have a major overlap (0.1 <
A < 0.9) with more than one detected tables. This
indicates that different parts of the ground-truth table
were detected as separate tables (see Figure 4(b)).

• Under-Segmented Tables: These are the number of
ground-truth tables that have a major overlap (0.1 <
A < 0.9) with one detected table, but the correspond-
ing detected table has major overlaps with other ground-
truth tables as well. This indicates that more than one
table (possibly adjacent) were merged by the detection
algorithm and were reported as a single table (see Fig-
ure 4(c)).

• Missed Tables: These are the number of ground-
truth tables that do not have a major overlap with
any of the detected tables (A ≤ 0.1). These tables are
regarded as missed by the detection algorithm.

• False Positive Detections: These are the number
of detected tables that do not have a major overlap
with any of the ground-truth tables (A ≤ 0.1). These
tables are regarded as false positive detections since
the system mistook some non-table region as a table
(see Figure 4(d)).



• Area Precision: While the measures defined above
help in understanding which types of errors were made
by the table detection algorithm, the goal of this mea-
sure is to summarize the performance of the algorithm
by measuring what percentage of the detected table re-
gions actually belong to a table region in the ground-
truth image. A high precision is achieved when the
decision about the presence of a table region is made
very conservatively.

• Area Recall: This measure evaluates the percentage
of the ground-truth table regions that was marked as
belonging to a table by the algorithm. The concept of
precision and recall measures are similar to their use
in the information retrieval community [13].

5. EXPERIMENTS AND RESULTS
To evaluate the performance of our table detection algo-
rithm, we chose the UNLV dataset [1]. The UNLV dataset
contains a large variety of documents ranging from technical
reports and business letters to newspapers and magazines.
The dataset was specifically created to analyze the perfor-
mance of leading commercial OCR systems in the UNLV
annual tests of OCR accuracy [15]. It contains more than
10,000 scanned pages at different resolutions and 1000 fax
documents. The scanned pages are categorized into bi-tonal
and greyscale documents. The bi-tonal documents are again
grouped into different scan resolutions (200, 300, and 400
dpi). For each page, manually-keyed ground-truth text is
provided, along with manually-determined zone information.
The zones are further labeled according to their contents
(text, table, half-tone, . . . ). We picked bi-tonal documents
in the 300 dpi class for our experiments since this represents
the most common settings for scanning documents. Among
these images, 427 pages containing table zones were selected.
These page images were further split into a training set of
213 images and a test set of 214 images. The training images
were used in the development of the algorithm and different
steps of the algorithm were extensively evaluated on these
images. The test images were used in the end to evaluate
the complete system.

Results of our table detection algorithm on some sample
images from the UNLV dataset are shown in Figure 5. De-
tailed evaluation of the algorithm and its comparison with a
state-of-the-art commercial OCR system is given in Table 1
and Figure 6.It should be noted that the ground-truth table
zones provided with the UNLV dataset also include the table
caption inside the zone. Since table caption is not a tabu-
lar structure, it is left out of the table by all OCR systems.
Therefore, we edited the ground-truth information by man-
ually marking the table caption regions in all documents.
Then this region was excluded from the ground-truth ta-
ble zones provided with the dataset. This was achieved by
shrinking the ground-truth table zones to tightly enclose all
foreground pixels that were not part of the table caption.
The experimental results show that our system was able
to spot table regions with a precision of 86% on the test
data. The recall was also quite high (79%) showing a good
compromise between precision and recall. The commercial
OCR system, on the other hand, had a lower recall (37%)
but higher precision (96%).
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Figure 6: A bar chart of the accuracy of the pro-
posed table detection system with that of a com-
mercial OCR on UNLV test set (214 page containing
268 tables).

Some of the errors made by our algorithm are shown in Fig-
ure 4. An analysis of the results shows that the major source
of errors are full-page tables. In these cases, the column find-
ing algorithm reports several columns of text. Since newspa-
pers also have several text columns, without using a priori
knowledge about the type of documents (report, newspaper,
. . . ) it is hard to detect that the large number of columns
are due to a full-page table. One typical example is a page
containing “table of contents”. Such pages are marked as
table regions in the ground-truth information provided with
the UNLV dataset. However, our algorithm regards them as
regular text pages hence either missing these “tables” com-
pletely or partially detecting them.

The false positive detection made by our algorithm were also
analyzed. We noticed an interesting side-effect of our algo-
rithm. Since many graphics regions have text inside them
that is spaced apart, such regions were also spotted as ta-
bles. Although such cases were reported as false alarms, in
some cases it might be beneficial to additionally spot graph-
ics regions as well. Other cases of false alarms originated
from tabulated equations. False alarms in pure text regions
were quite rare.

6. CONCLUSION
This paper presented a table detection algorithm as part
of the Tesseract open source OCR system. The presented
algorithm uses components of the layout analysis module
of Tesseract to locate tables in documents having a large
variety of layouts. Experimental results on different classes
of documents (company reports, journal articles, newspaper
articles, magazine pages) from the UNLV dataset showed
that our table detection algorithm competes well with that
of a commercial OCR system with a much higher recall and
slightly lower precision. We plan to extend this work in the
direction of table structure extraction in future.



Figure 5: Some sample images from the UNLV dataset showing the table spotting results of our algorithm.



Table 1: Results of evaluating a commercial OCR system and the proposed table detection algorithm on the
427 binary 300-dpi scanned UNLV dataset pages containing table zones.

Training Images (302 tables) Test Images (268 tables)

Commercial Tesseract Commercial Tesseract

System System

Correct Detections 79 130 58 131

Partial Detections 66 65 75 61

Over-Segmented Tables 25 30 19 18

Under-Segmented Table 17 55 14 39

Missed Tables 120 31 103 22

False Positive Detections 6 17 7 29

Area Precision 97.4% 90% 96.3% 86%

Area Recall 40.7% 78% 36.7% 79%
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