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Abstract—We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed

approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It

also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the

selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the

proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in

separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present

along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned

dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-

category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation

approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

Index Terms—Bayesian sparse representation, discriminative dictionary learning, supervised learning, classification

Ç

1 INTRODUCTION

SPARSE representation encodes a signal as a sparse linear
combination of redundant basis vectors. With its inspira-

tional roots in human vision system [16], [17], this technique
has been successfully employed in image restoration [18],
[19], [20], compressive sensing [21], [22] and morphological
component analysis [23]. More recently, sparse representa-
tion based approaches have also shown promising results
in face recognition and gender classification [9], [8], [10],
[13], [24], [25], [26], texture and handwritten digit classifica-
tion [14], [29], [30], [31], natural image and object classifica-
tion [9], [11], [32] and human action recognition [33], [34],
[35], [36]. The success of these approaches comes from the
fact that a sample from a class can generally be well repre-
sented as a sparse linear combination of the other samples
from the same class, in a lower dimensional manifold [8].

For classification, a discriminative sparse representation
approach first encodes the test instance over a dictionary,
i.e., a redundant set of basis vectors, known as atoms. There-
fore, an effective dictionary is critical for the performance of
such approaches. It is possible to use an off-the-shelf basis
(e.g., fast Fourier transform [41] or wavelets [42]) as a generic
dictionary to represent data from different domains/classes.
However, research in the last decade ([6], [9], [10], [11], [18],

[43], [44], [45]) has provided strong evidence in favor of
learning dictionaries using the domain/class-specific train-
ing data, especially for classification and recognition
tasks [10], where class label information of the training data
can be exploited in the supervised learning of a dictionary.

Whereas unsupervised dictionary learning approaches
(e.g., K-SVD [6], Method of Optimal Directions [46]) aim at
learning faithful signal representations, supervised sparse
representation additionally strives for making the dictionar-
ies discriminative. For instance, in Sparse Representation
based Classification (SRC) scheme, Wright et al. [8] con-
structed a discriminative dictionary by directly using the
training data as the dictionary atoms. With each atom asso-
ciated to a particular class, the query is assigned the label of
the class whose associated atoms maximally contribute to
the sparse representation of the query. Impressive results
have been achieved for recognition and classification using
SRC, however, the computational complexity of this tech-
nique becomes prohibitive for large training data. This has
motivated considerable research on learning discriminative
dictionaries that would allow sparse representation based
classification with much lower computational cost.

In order to learn a discriminative dictionary, existing
approaches either force subsets of the dictionary atoms to
represent data from only specific classes [12], [26], [47] or
they associate the complete dictionary to all the classes and
constrain their sparse coefficients to be discriminative [7],
[9], [28]. A third category of techniques learns exclusive sets
of class specific and common dictionary atoms to separate
the common and particular features of the data from differ-
ent classes [11], [54]. Establishing association between the
atoms and the corresponding class labels is a key step of the
existing methods. However, adaptively building this associ-
ation is still an open research problem [13]. Moreover, the
strategy of assigning different number of dictionary atoms
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to different classes and adjusting the overall size of the dic-
tionary become critical for the classification accuracy of the
existing approaches, as no principled approach is generally
provided to predetermine these parameters.

In this work, we propose a solution to this problem by
approaching the sparse representation based classification
from a non-parametric Bayesian perspective. We propose a
Bayesian sparse representation technique that infers a dis-
criminative dictionary using a finite approximation of the
Beta Process [56]. Our approach adaptively builds the asso-
ciation between the dictionary atoms and the class labels
such that this association signifies the probability of selec-
tion of the dictionary atoms in the expansion of class-spe-
cific data. Furthermore, the non-parametric character of the
approach allows it to automatically infer the correct size of
the dictionary. The scheme employed by our approach is
shown in Fig. 1. We perform Bayesian inference over a
model proposed for the discriminative sparse representa-
tion of the training data. The inference process learns distri-
butions over the dictionary atoms and sets of Bernoulli
distributions associating the dictionary atoms to the labels
of the data. The Bernoulli distributions govern the support
of the final sparse codes and are later utilized in learning a
multi-class linear classifier. The final dictionary is learned
by sampling the distributions over the dictionary atoms and

the corresponding sparse codes are computed by an ele-
ment-wise product of the support and the inferred weights
of the codes. The learned dictionary and the sparse codes
also represent the training data faithfully.

A query is classified in our approach by first sparsely
encoding it over the inferred dictionary and then classifying
its sparse code with the learned classifier. In this work, we
learn the classifier and the dictionary using the same hierar-
chical Bayesian model. This allows us to exploit the afore-
mentioned Bernoulli distributions in the accurate estimate of
the classifier.We present the proposed Bayesianmodel along
its inference equations for Gibbs sampling. Our approach
has been tested on two face-databases [1], [2], an object-data-
base [3], an action-database [5] and a scene-database [4]. The
classification results are compared with the state-of-the-art
discriminative sparse representation approaches. The pro-
posed approach not only outperforms these approaches in
terms of accuracy, its computational efficiency for the classi-
fication stage is also comparable to the most efficient existing
approaches.

This paper is organized as follows. We review the related
work in Section 2. In Section 3, we formulate the problem
and briefly explain the relevant concepts that clarify the
rationale behind our approach. The proposed approach is
presented in Section 4. Experimental results are reported in

Fig. 1. Schematics of the proposed approach: For training, a set of probability distributions over the dictionary atoms, i.e., @, is learned. We also infer
sets of Bernoulli distributions indicating the probabilities of selection of the dictionary atoms in the expansion of data from each class. These distribu-
tions are used for inferring the support of the sparse codes. The (parameters of) Bernoulli distributions are later used for learning a classifier. The final
dictionary is learned by sampling the distributions in @, whereas the sparse codes are computed as element-wise product of the support and the
weights (also inferred by the approach) of the codes. Combined, the dictionary and the codes faithfully represent the training data. For testing, sparse
codes of the query over the dictionary are computed and fed to the classifier for labeling.
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Section 5 and a discussion on the parameter settings is pro-
vided in Section 6. We draw conclusions in Section 7.

2 RELATED WORK

There are three main categories of the approaches that learn
discriminative sparse representation. In the first category,
the learned dictionary atoms have a direct correspondence
to the labels of the classes [12], [26], [35], [36], [47], [48], [49].
Yang et al. [26] proposed an SRC like framework for face
recognition, where the atoms of the dictionary are learned
from the training data instead of directly using the training
data as the dictionary. In order to learn a dictionary that is
simultaneously discriminative and reconstructive, Mairal
et al. [47] used a discriminative penalty term in the K-SVD
model [6], achieving state-of-the-art results on texture seg-
mentation. Sprechmann and Sapiro [48] also proposed to
learn dictionaries and sparse codes for clustering. In [36],
Castrodad and Sapiro computed class-specific dictionaries
for actions. The dictionary atoms and their sparse coeffi-
cients also exploited the non-negativity of the signals in
their approach. Active basis models are learned from the
training images of each class and applied to object detection
and recognition in [49]. Ramirez et al. [12] have used an
incoherence promoting term for the dictionary atoms in
their learning model. Encouraging incoherence among the
class-specific sub-dictionaries allowed them to represent
samples from the same class better than the samples from
the other classes. Wang et al. [35] have proposed to learn
class-specific dictionaries for modeling individual actions
for action recognition. Their model incorporated a similarity
constrained term and a dictionary incoherence term for clas-
sification. The above mentioned methods mainly associate a
dictionary atom directly to a single class. Therefore, a query
is generally assigned the label of the class whose associated
atoms result in the minimum representational error for the
query. The classification stages of the approaches under this
category often require the computation of representations
of the query over many sub-dictionaries.

In the second category, a single dictionary is shared by all
the classes, however the representation coefficients are forced
to be discriminative ([7], [9], [28], [29], [30], [31], [33], [45],
[50], [51]). Jiang et al. [9] proposed a dictionary learning
model that encourages the sparse representation coefficients
of the same class to be similar. This is done by adding a
‘discriminative sparse-code error’ constraint to a unified
objective function that already contains reconstruction error
and classification error constraints. A similar approach is
taken by Rodriguez and Sapiro [30] where the authors solve
for a simultaneous sparse approximation problem [52] while
learning the coefficients. It is common to learn dictionaries
jointly with a classifier. Pham and Venkatesh [45] and Mairal
et al. [28] proposed to train linear classifiers along the joint
dictionaries learned for all the classes. Zhang and Li [7]
enhanced the K-SVD algorithm [6] to learn a linear classifier
along the dictionary. A task driven dictionary learning frame-
work has also been proposed [31]. Under this framework, dif-
ferent risk functions of the representation coefficients are
minimized for different tasks. Broadly speaking, the above
mentioned approaches aim at learning a single dictionary
together with a classifier. The query is classified by directly
feeding its sparse codes over the learned single dictionary to

the classifier. Thus, in comparison to the approaches in the
first category, the classification stage of these approaches is
computationally more efficient. In terms of learning a single
dictionary for the complete training data and the classification
stage, the proposed approach also falls under this category of
discriminative sparse representation techniques.

The third category takes a hybrid approach for learning the
discriminative sparse representation. In these approaches, the
dictionaries are designed to have a set of shared atoms in
addition to class-specific atoms. Deng et al. [53] extended the
SRC algorithm by appending an intra-class face variation dic-
tionary to the training data. This extension achieves promis-
ing results in face recognition with a single training sample
per class. Zhou and Fan [54] employ a Fisher-like regularizer
on the representation coefficients while learning a hybrid dic-
tionary. Wang and Kong [11] learned a hybrid dictionary to
separate the common and particular features of the data.
Their approach also encouraged the class-specific dictionaries
to be incoherent. Shen et al. [55] proposed to learn a multi-
level dictionary for hierarchical visual categorization. To
some extent, it is possible to reduce the size of the dictionary
using the hybrid approach, which also results in reducing the
classification time in comparison to the approaches that fall
under the first category. However, it is often non-trivial to
decide on how to balance between the shared and the class-
specific parts of the hybrid dictionary [10], [13].

The above mentioned approaches make the dictionaries
discriminative by controlling the extent of their atom-shar-
ing among class-specific representations. In this regard,
latent variable models [67], [68], [69], [70] are also related
to the discriminative dictionary learning framework. Dam-
ianou et al. [67] presented a Bayesian model that factorizes
the latent variable space to represent shared and private
information from multiple data views. They kept the seg-
mentation of the latent space soft, such that a latent vari-
able is even allowed to be more important to the shared
space than the private space. Andrade-Pacheco et al. [68]
later extended their approach to non-Gaussian data. Lu
and Tang [69] also extended the Relevance Manifold Deter-
mination (RMD) [67] to learn face prior for Bayesian face
recognition. Their approach first learned identity subspaces
for each subject using RMD and later used the structure of
the subspaces to estimate the Gaussian mixture densities
in the observation space. Klami et al. [70] proposed a
model for group factor analysis and formulated its solution
as a variational inference of a latent variable model with
structural sparsity.

3 PROBLEM FORMULATION AND BACKGROUND

Let X ¼ ½X1; . . . ;Xc; . . . ;XC � 2 Rm�N be the training data

comprising N instances from C classes, wherein Xc 2 Rm�Nc

represents the data from the cth class and
PC

c¼1 Nc ¼ N . The
columns of Xc are indexed in I c. We denote a dictionary by

FF 2 Rm�jKj with atoms ’’k, where k 2 K ¼ f1; . . . ; Kg and j:j
represents the cardinality of the set. Let A 2 RjKj�N be the
sparse code matrix of the data, such that X � FFA. We can

write A ¼ ½A1; . . . ;Ac; . . . ;AC �, where Ac 2 RjKj�jIcj is the
sub-matrix related to the cth class. The ith column of A is

denoted as aai 2 RjKj. To learn a sparse representation of the
data, we can solve the following optimization problem:
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<FF;A>¼ min
FF;A

jjX�FFAjj2F s:t: 8i; jjaaijjp � t; (1)

where t is a predefined constant, jj:jjF computes the Frobe-
nius norm and jj:jjp denotes the ‘p-norm of a vector. Gener-

ally, p is chosen to be 0 or 1 for sparsity [57]. The non-convex
optimization problem of Eq. (1) can be iteratively solved by
fixing one parameter and solving a convex optimization
problem for the other parameter in each iteration. The solu-
tion to Eq. (1), factors the training data X into two comple-
mentary matrices, namely the dictionary and the sparse
codes, without considering the class label information of the
training data. Nevertheless, we can still exploit this factoriza-
tion in classification tasks by using the sparse codes of the
data as features [9], for which, a classifier can be obtained as

W ¼ min
W

XN
i¼1

Lfhi; fðaai;WÞg þ �jjWjj2F ; (2)

where W 2 RC�jKj contains the model parameters of the
classifier, L is the loss function, hi is the label of the ith train-
ing instance xi 2 Rm and � is the regularizer.

It is usually suboptimal to perform classification based
on sparse codes learned by an unsupervised technique.
Considering this, existing approaches [7], [28], [29], [45],
proposed to jointly optimize a classifier with the dictio-
nary while learning the sparse representation. One
intended ramification of this approach is that the label
information also gets induced into the dictionary. This
happens when the information is utilized in computing
the sparse codes of the data, which in turn are used for
computing the dictionary atoms. This results in improving
the discriminative abilities of the learned dictionary. Jiang
et al. [9] built further on this concept and encouraged
explicit correspondence between the dictionary atoms and
the class-labels. More precisely, the following optimization
problem is solved by the Label-Consistent K-SVD (LC-
KSVD2) algorithm [9]:

<FF;W;T;A>¼ min
FF;W;T;A

Xffiffiffi
y

p
Qffiffiffi

k
p

H

0B@
1CA�

FFffiffiffi
y

p
Tffiffiffi

k
p

W

0B@
1CAA

�������
�������
2

F

s:t: 8i jjaaijj0 � t;

(3)

where y and k are the regularization parameters, the binary

matrix H 2 RC�N contains the class label information,1 T 2
RjKj�jKj is the transformation between the sparse codes and

the discriminative sparse codes Q 2 RjKj�N . Here, for the ith
training instance, the ith column of the fixed binary matrix
Q has 1 appearing at the kth index only if the kth dictionary
atom has the same class label as the training instance. Thus,
the discriminative sparse codes form a pre-defined relation-
ship between the dictionary atoms and the class labels. This
brings improvement to the discriminative abilities of the
dictionary learned by solving Eq. (3).

It is worth noting that in Label-Consistent K-SVD algo-
rithm [9], the relationship between class-specific subsets
of dictionary atoms and class labels is pre-defined. How-
ever, regularization allows flexibility in this association
during optimization. We also note that using y ¼ 0 in
Eq. (3) reduces the optimization problem to the one solved
by Discriminative K-SVD (D-KSVD) algorithm [7]. Success-
ful results are achievable using the above mentioned tech-
niques for recognition and classification. However, like
any discriminative sparse representation approach, these
results are obtainable only after careful optimization of the
algorithm parameters, including the dictionary size. In
Fig. 2, we illustrate the behavior of recognition accuracy
under varying dictionary sizes for [7] and [9] for two face
databases.

Paisley and Carin [56] developed a Beta Process for non-
parametric factor analysis, which was later used by Zhou
et al. [44] in successful image restoration. Exploiting the
non-parametric Bayesian framework, a Beta Process can
automatically infer the factor/dictionary size from the train-
ing data. With the base measure �h0 and parameters ao > 0
and bo > 0, a Beta Process is denoted as BPðao; bo; �h0Þ. Pais-
ley and Carin [56] noted that a finite representation of the
process can be given as:

�h ¼
X
k

pkd’’kð’’Þ; k 2 K ¼ f1; . . . ; Kg;

pk � Betaðpkjao=K; boðK � 1Þ=KÞ;
’’k � �h0:

(4)

Fig. 2. Examples of how recognition accuracy is affected with varying dictionary size: k ¼ 0 for LC-KSVD1 and y ¼ 0 for D-KSVD in Eq. (3). All other
parameters are kept constant at optimal values reported in [9]. For the AR database, 2,000 training instances are used and testing is performed with
600 instances. For the Extended YaleB, half of the database is used for training and the other half is used for testing. The instances are selected uni-
formly at random.

1. For the ith training instance, the ith column of H has 1 appearing
only at the index corresponding to the class label.
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In Eq. (4), d’’kð’’Þ is 1when ’’ ¼ ’’k and 0 otherwise. There-
fore, a draw �h from the process can be represented as a set of
jKj probabilities, each having an associated vector ’’k, drawn
i:i:d: from the base measure �h0. Using �h, we can draw a

binary vector zi 2 f0; 1gjKj, such that the kth component of zi
is drawn zik � BernoulliðpkÞ. By independently drawing N

such vectors, we may construct a matrix Z 2 f0; 1gjKj�N ,
where zi is the ith column of this matrix.

Using the above mentioned finite approximation of the
Beta Process, it is possible to factorize X as follows:

X ¼ FFZþ E; (5)

where, FF 2 Rm�jKj has ’’k as its columns and E 2 Rm�N is
the error matrix. In Eq. (5), the number of non-zero compo-
nents in a column of Z can be controlled by the parameters
ao and bo in Eq. (4). The components of the kth row of Z are

independent draws from BernoulliðpkÞ. Let pp 2 RjKj be a
vector with pk2K, as its kth element. This vector governs the
probability of selection of the columns of FF in the expansion
of the data. Existence of this physically meaningful latent
vector in the Beta Process based matrix factorization plays a
central role in the proposed approach.

4 PROPOSED APPROACH

We propose a Discriminative Bayesian Dictionary Learning
approach for classification. For the cth class, our approach

draws jI cj binary vectors zci 2 RjKj, 8i 2 I c using a finite
approximation of the Beta Process. For each class, the vectors
are sampled using separate draws with the same base. That
is, the matrix factorization is governed by a set ofC probabil-

ity vectors ppc2f1;...;Cg, instead of a single vector, however the
inferred dictionary is shared by all the classes. An element of

the aforementioned set, i.e., ppc 2 RjKj, controls the probabil-
ity of selection of the dictionary atoms for a single class data.
This promotes discrimination in the inferred dictionary.

4.1 The Model

Let aac
i 2 RjKj denote the sparse code of the ith training

instance of the cth class, i.e., xci 2 Rm, over a dictionary

FF 2 Rm�jKj. Mathematically, xci ¼ FFaac
i þ ��i, where ��i 2 Rm

denotes the modeling error. We can directly use the Beta Pro-
cess discussed in Section 3 for computing the desired sparse
code and the dictionary. However, the model employed by
the Beta Process is restrictive, as it only allows the code to be
binary. To overcome this restriction, let aac

i ¼ zci 	 sci , where	
denotes the Hadamard/element-wise product, zci 2 RjKj is

the binary vector and sci 2 RjKj is a weight vector. We place a

standard normal prior Nðscikj0; 1=�c
so
Þ on the kth component

of the weight vector scik, where �c
so
denotes the precision of the

distribution. In here, as in the following text, we use the sub-
script ‘o’ to distinguish the parameters of the prior distribu-
tions. The prior distribution over the kth component of the
binary vector is Bernoulliðzcikjpc

ko
Þ. We draw the atoms of the

dictionary from amultivariate Gaussian base, i.e.. ’’k � Nð’’kj
mmko ;LL

�1
ko
Þ, where mmko 2 Rm is the mean vector and LLko 2

Rm�m is the precision matrix for the kth atom of the dictio-
nary.Wemodel the error as zero mean Gaussian inRm. Thus,
we arrive at the following representationmodel:

xci ¼ FFaac
i þ ��i 8i 2 I c; 8c

aac
i ¼ zci 	 sci

zcik � Bernoulliðzcikjpc
ko
Þ

scik � Nðscikj0; 1=�csoÞ
pc
k � Betaðpc

kjao=K; boðK � 1Þ=KÞ
’’k � Nð’’kjmmko ;LL

�1
ko
Þ 8k 2 K

��i � Nð��ij0;LL�1
�o
Þ8i 2 f1; . . . ; Ng:

(6)

Notice, in the above model a conjugate Beta prior is
placed over the parameter of the Bernoulli distribution, as
mentioned in Section 3. Hence, a latent probability vector ppc

(with pc
k as its components) is associated with the dictionary

atoms for the representation of the data from the cth class.
The common dictionary FF is inferred from C such vectors.
In the above model, this fact is notationally expressed by
showing the dictionary atoms being sampled from a com-
mon set of jKj distributions, while distinguishing the class-
specific variables in the other notations with a superscript
‘c’. We assume the same statistics for the modeling error
over the complete training data.2 We further place non-
informative Gamma hyper-priors over the precision param-
eters of the normal distributions. That is, �c

s � Gð�c
sjco; doÞ

and �� � Gð��jeo; foÞ, where co; do; eo and fo are the parame-
ters of the respective Gamma distributions. Here, we allow
the error to have an isotropic precision, i.e., LL� ¼ ��Im,
where Im denotes the identity matrix in Rm�m. The graphi-
cal representation of the complete model is shown in Fig. 3.

4.2 Inference

Gibbs sampling is used to perform Bayesian inference over
the proposed model.3 Starting with the dictionary, below we
derive analytical expressions for the posterior distributions

Fig. 3. Graphical representation of the proposed discriminative Bayesian
dictionary learning model.

2. It is also possible to use different statistics for different classes,
however, in practice the assumption of similar noise statistics works
well. We adopt the latter to avoid unnecessary complexity.

3. Paisley and Carin [56] derived variational Bayesian algorithm [58]
for their model. It was shown by Zhou et al. [44] that Gibbs sampling is
an equally effective strategy in data representation using the same
model. Since it is easier to relate the Gibbs sampling process to the
learning process of conventional optimization based sparse representa-
tion (e.g., K-SVD [6]), we derive expressions for the Gibbs sampler for
our approach. Due to the conjugacy of the model, these expressions can
be derived analytically.

2378 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 12, DECEMBER 2016



over the model parameters for the Gibbs sampler. The infer-
ence process performs sampling over these posterior distri-
butions. The expressions are derived assuming zero mean
Gaussian prior over the dictionary atoms, with isotropic pre-
cision. That is, mmko ¼ 0 and LLko ¼ �koIm. This simplification
leads to faster sampling, without significantly affecting the
accuracy of the approach. The sampling process samples the
atoms of the dictionary one-by-one from their respective pos-
terior distributions. This process is analogous to the atom-by-
atom dictionary update step of K-SVD [6], however the
sparse codes remain fixed during our dictionary update.

Sampling ’’k. For our model, we can write the following
about the posterior distribution over a dictionary atom:

pð’’kj�Þ /
YN
i¼1

NðxijFFðzi 	 siÞ; ��1
�o
ImÞN

�
’’kj0; ��1

ko
Im
�
:

Here, we intentionally dropped the superscript ‘c’ as the
dictionary is updated using the complete training data. Let
xi’k denote the contribution of the dictionary atom ’’k to the

ith training instance xi:

xi’k ¼ xi �FFðzi 	 siÞ þ ’’kðzik 	 sikÞ: (7)

Using Eq. (7), we can re-write the aforementioned pro-
portionality as

pð’’kj�Þ /
YN
i¼1

N �xi’k j’’kðziksikÞ; ��1
�o
Im
�N �’’kj0; ��1

ko
Im
�
:

Considering the above expression, the posterior distribu-
tion over a dictionary atom can be written as

pð’’kj�Þ ¼ N �’’kjmmk; �
�1
k Im

�
; (8)

where,

mmk ¼
��o

�k

XN
i¼1

ðzik:sikÞxi’k ; �k¼�ko þ ��o

XN
i¼1

ðzik:sikÞ2:

Sampling zcik. Once the dictionary atoms have been sam-
pled, we sample zcik, 8i 2 I c, 8k 2 K. Using the contribution
of the kth dictionary atom, the posterior probability distri-
bution over zcik can be expressed as

p
�
zcikj �

� / N �xci’k j’’k

�
zcik:s

c
ik

�
; ��1

�o
Im
�
Bernoulli

�
zcikjpc

ko

�
:

Here we are concerned with the cth class only, therefore
xci’k

is computed with the cth class data in Eq. (7). With the

prior probability of zcik ¼ 1 given by pc
ko
, we can write the

following about its posterior probability:

p
�
zcik ¼ 1j � � / pc

ko
exp ���o

2
jjxci’k � ’’ks

c
ikjj22

� �
:

It can be shown that the right hand side of the above pro-
portionality can be written as:

p1 ¼ pc
ko
z1z2;

where, z1 ¼ expð� ��o s
c
ik

2 ðjj’’kjj22scik � 2ðxci’k Þ
T
’’kÞÞ and z2 ¼

expð� ��o
2 jjxci’k jj

2
2Þ. Furthermore, since the prior probability

of zcik ¼ 0 is given by 1� pc
ko
, we can write the following

about its posterior probability:

p
�
zcik ¼ 0j � � / �1� pc

ko

�
z2:

Thus, zcik can be sampled from the following normalized
Bernoulli distribution:

Bernoulli zcik

��� p1
p1 þ ð1� pc

ko
Þz2

 !
:

By inserting the value of p1 and simplifying, we finally
arrive at the following expression for sampling zcik:

zcik � Bernoulli zcik

��� pc
ko
z1

1þ pc
ko
ðz1 � 1Þ

 !
: (9)

Sampling scik. We can write the following about the pos-
terior distribution over scik:

p
�
scikj �

� / N �xci’k j’’k

�
zcik:s

c
ik

�
; ��1

�o
Im
�N �scikj0; 1=�c

so

�
:

Again, notice that we are concerned with the cth class
data only. In light of the above expression, scik can be sam-
pled from the following posterior distribution:

p
�
scikj �

� ¼ N �scikjmc
s; 1=�

c
s

�
; (10)

where, mc
s¼��o

�cs
zcik’’

T
k x

c
i’k

; �c
s¼�c

so
þ ��oðzcikÞ2jj’’kjj22:

Sampling pc
k. Based on our model, we can also write the

posterior probability distribution over pc
k as

pðpc
kj�Þ/

Y
i2Ic

Bernoulli
�
zcikjpc

ko

�
Beta pc

ko

��� ao
K

;
boðK � 1Þ

K

� �
:

Using the conjugacy between the distributions, it can be
easily shown that the kth component of ppc must be drawn
from the following posterior distribution during the sam-
pling process:

pðpc
kj�Þ¼Beta pc

k

��� ao
K

þ
X
i2Ic

zcik;
boðK � 1Þ

K
þ jI cj �

X
i2Ic

zcik

 !
:

(11)

Sampling �c
s. In our model, the components of the

weight vectors are drawn from a standard normal distribu-
tion. For a given weight vector, common priors are assumed
over the precision parameters of these distributions. This
allows us to express the likelihood function for �c

s in terms
of standard multivariate Gaussian with isotropic precision.
Thus, we can write the posterior over �c

s as the following:

p
�
�c
sj �

� / Y
i2Ic

N sci

���0; 1

�c
so

IjKj

 !
G
�
�c
so
jco; do

�
:

Using the conjugacy between the Gaussian and Gamma
distributions, it can be shown that �c

s must be sampled as:
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�c
s � G �c

s

��� jKjNc

2
þ co;

1

2

X
i2Ic

jjsci jj22 þ do

 !
: (12)

Sampling ��.We can write the posterior over �� as

pð��j�Þ /
YN
i¼1

N �xijFFðzi 	 si
�
; ��1

�o
Im
�
Gð��o jeo; foÞ:

Similar to �c
s, we can arrive at the following for sampling

�� during the inferencing process:

�� � G

 
mN

2
þ eo;

1

2

XN
i¼1

jjxi �FFðzi 	 siÞjj22 þ fo

!
: (13)

As a result of Bayesian inference, we obtain sets of pos-
terior distributions over the model parameters. We are par-
ticularly interested in two of them. Namely, the set of
distributions over the dictionary atoms @ ¼deffN ð’’kjmmk;

LL�1
k Þ : k 2 Kg 
 Rm, and the set of probability distributions

characterized by the vectors ppc2f1;...;Cg 2 RjKj. Momentarily,
we defer the discussion on the latter. The former is used to
compute the desired dictionary FF. This is done by drawing
multiple samples from the elements of @ and estimating
the corresponding dictionary atoms as respective means of
the samples. Indeed, the mean parameters of the elements
of @ can also be chosen as the desired dictionary atoms.
However, we adopt the former approach because it also
accounts for the precisions of the posterior distributions
while computing the final dictionary. Although the diff-
erence in the classification performance resulting from
the two approaches is generally very small, the adopted
approach is preferred as it also adds to the robustness of
the dictionary against the noise in the training data [72].

Our model allows to estimate the desired size of the dic-
tionary non-parametrically. We present Lemma 4.1 regard-
ing the expected size of the dictionary according to our
model. In Lemma 4.2, we make an observation that is
exploited in the sampling process to estimate this size.

Lemma 4.1. For a very largeK, E½�� ¼ ao
bo
, where � ¼PK

k¼1 z
c
ik.

Proof. 4 According to the proposed model, the covariance of
a data vector from the cth class, i.e., xci can be given by:

E
	�
xci
��
xci
�T
 ¼ aoK

ao þ boðK � 1Þ
LL�1

ko

�c
so

þ LL�1
�o
: (14)

tu
In Eq. (14), fraction ao

aoþboðK�1Þ appears due to the presence

of zci in the model and the equation simplifies to

E½ðxciÞðxciÞT� ¼ K
LL�1
ko

�cso
þ LL�1

�o
when we neglect zci . Here, K sig-

nifies the number of dictionary atoms required to represent
the data vector. In the equation, as K becomes very large,

E½ðxciÞðxciÞT� ! ao
bo

LL�1
ko

�cso
þ LL�1

�o
. Thus, for a large dictionary, the

expected number of atoms required to represent xi
c is given

by ao
bo
. Meaning, E½�� ¼ ao

bo
, where � ¼PK

k¼1 z
c
ik.

Lemma 4.2. Once pc
k ¼ 0 in a given iteration of the sampling

process, E½pc
k� � 0 for the later iterations.

Proof. According to Eq. (9), 8i 2 I c, z
c
ik ¼ 0 when pc

ko
¼ 0.

Once this happens, the posterior distribution over pc
k

becomes Beta pc
k

���â; b̂� �
, where â ¼ ao

K and b̂ ¼ boðK�1Þ
K þ

jI cj (see Eq. (11)). Thus, the expected value of pc
k for

the later iterations can be written as E½pc
k� ¼ â

âþb̂
¼

ao
aoþboðK�1ÞþKjIcj . With 0 < ao; bo < jI cj � K we can see

that E½pc
k� � 0. tu

Considering Lemma 4.1, we start with a very large value
of K in the Gibbs sampling process. We let K ¼ 1:5�N
and let 0 < ao; bo < jI cj to ensure that the resulting repre-
sentation is sparse. We drop the kth dictionary atom during
the sampling process if pc

k ¼ 0, for all the classes simulta-
neously. According to Lemma 4.2, dropping such an atom
does not bring significant changes to the final representa-
tion. Thus, by removing the redundant dictionary atoms in
each sampling iteration, we finally arrive at the correct size
of the dictionary, i.e., jKj.

As mentioned above, with Bayesian inference over

the proposed model we also infer a set of probability

vectors ppc2f1;...;Cg. Each element of this set, i.e., ppc 2 RjKj,
further characterizes a set of probability distributions

=c ¼deffBernoulliðpc
kÞ : k 2 Kg 
 R. Here, Bernoulliðpc

kÞ is
jointly followed by all the kth components of the sparse
codes for the cth class. If the kth dictionary atom is com-
monly used in representing the cth class training data, we
must expect a high value of pc

k, and pc
k ! 0 otherwise. In

other words, for an arranged dictionary, components of ppc

having large values should generally cluster well if the
learned dictionary is discriminative. Furthermore, these
clusters must appear at different locations in the inferred
vectors for different classes. Such clusterings would demon-
strate the discriminative character of the inferred dictionary.
Fig. 4 verifies this character for the dictionaries inferred
under the proposed model. Each row of the figure plots six
different probability vectors (i.e., ppc) for different training
datasets. A clear clustering of the high value components of
the vectors is visible in each plot. In the supplementarymate-
rial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/,
TPAMI.2016.2527652 of the paper, we also illustrate few dic-
tionary atoms corresponding to the largest values of pc

k for
the Extended YaleB database [2]. Detailed experiments are
presented in Section 5.

Whereas clear clusters are visible in Fig. 4, we can also
see few non-zero values appearing far from the main clus-
ters. These values indicate the sharing of atoms among the
data representations of different classes. We note that our
model allows such sharing because it employs finite
approximation of the Beta Process. Such a model is suffi-
cient for practical classification tasks where the training
data size is always finite and known a priori. Our model
only requires K to be larger than the training data size. We
also note that the model does not allow the atom sharing

4. We follow [56] closely in the proof, however, our analysis also
takes into account the class labels of the data, whereas no such data dis-
crimination is assumed in [56].
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between the classes if K is infinite. In that case, an atom of
the dictionary will correspond to only a single class. This is
similar to the first category of the discriminative dictionary
learning approaches discussed in Section 2.

4.3 Classification

To classify a query y 2 Rm, we first compute its sparse
representation baa over the learned dictionary. The label of
the query is predicted by maximizing the coefficients of

the vector ‘‘ ¼ Wbaa, where W 2 RC�jKj denotes a multi-class
linear classifier. Effectiveness of learning such a classifier
in accordance with the dictionary is already established for
discriminative dictionary learning [7], [9]. Therefore, we
also couple our classifier with the learned dictionary. Nev-
ertheless, we keep the learning processes of the dictionary
and the classifier disjoint to fully exploit the potential of
our model. Further discussion in this regard is deferred to
Section 6. In order to learn the classifier, we first define a

vector hc
i 2 RC for each class. These vectors are computed

using ppc2f1;...;Cg inferred by the dictionary learning process.
For the cth class, the qth coefficient hc

iq of hc
i is computed

as hc
iq ¼

P
k2C p

q
k where, C indexes the non-zero coefficients

of ppc. Considering that large non-zero coefficients of ppc

generally appear at the locations corresponding to the cth
class, hc

iq is large when q ¼ c and small otherwise. After

normalization, we use the computed vectors as the training
data for the classifier. The training is done by solving

hc
i ¼ Wbbc

i þ ��i using the model in Eq. (6). Here, bbci 2 RjKj is
a sparse coefficient vector defined over W, just as aac

i was
defined over the dictionary.

The inference process for learning the classifier is also
guided by the probability vectors ppc2f1;...;Cg computed by
the dictionary learning stage. We directly use these vectors
for classifier learning and keep them fixed during the com-
plete sampling process. Notice that, our sampling process
computes a basis keeping in view the support of its coeffi-
cient vectors, i.e., ’’k depends on zik in Eq. (8). Since the sup-
port of aac

i and bbc
i follow the same set of probability

distributions, given by ppc2f1;...;Cg, a coupling is induced

between their inferred bases, i.e., FF and W. This forces the
learned parameters ofW to respect the popularity of the dic-
tionary atoms for representing the class-specific training
data. Since the popularity of the atoms is expected to remain
consistent across the training and the test data for a given
class, we can directly use the classifier with the sparse codes
of the test data to correctly predict its class label.

To classify a query, we first find its sparse representation
over the learned dictionary. Keeping in view that our dictio-
nary learning model imposes sparsity on a coefficient vector
by forcing many of its components to zero, we choose
Orthogonal Matching Pursuit (OMP) algorithm [60] to effi-
ciently compute the sparse representation of the query sig-
nal. OMP allows only a few non-zero components in the
representation vector to maximally approximate the query
signal using the dictionary. Therefore, the popular dictio-
nary atoms for the correct class of the query usually contrib-
ute significantly to the representation. This helps in
accurate classification using W. Notice that, to predict the
label of a K-dimensional sparse vector, our approach only
has to multiply it with a C �K-dimensional matrix and
search for the maximum value in the resulting C-dimen-
sional vector. This makes our classification approach much
efficient compared to the alternative of using a sophisticated
classifier like SVM to classify the sparse codes of the query.
Since efficient classification of a query signal is one of the
major goals of discriminative dictionary learning, we con-
sider our approach highly attractive.

4.4 Initialization

For inferring the dictionary, we need to first initialize FF, zci ,
sci and pc

k. We initialize FF by randomly selecting the training
instances with replacement. We sparsely code xci over the
initial dictionary using OMP [60]. The codes are considered
as the initial sci , whereas their support forms the initial vec-
tor zci . Computing the initial sci and zci with other methods,
such as regularized least squares, is equally effective. We
set pc

k ¼ 0:5; 8c;8k for the initialization. Notice, this means
that all the dictionary atoms initially have equal chances of
getting selected in the expansion of a training instance from

Fig. 4. Illustration of the discriminative character of the inferred dictionary: From top, the four rows present results on AR database [1], Extended
YaleB [2], Caltech-101[3] and 15 Scene categories [4], respectively. In each plot, the x-axis represents k 2 K and the y-axis shows the corresponding
probability of selection of the kth dictionary atom in the expansion of the data. A plot represents a single ppc vector learned as a result of Bayesian
inference. For the first three rows, from left to right, the value of c (i.e., class label) is 1, 5, 10, 15, 20 and 25, respectively. For the fourth row the value
of c is 1, 3, 5, 7, 9 and 11 for the plots from left to right. Plots clearly show distinct clusters of high probabilities for different classes.
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any class. The values of pc
k; 8c; 8k finally inferred by the dic-

tionary learning process serve as the initial values of these
parameters for learning the classifier. Similarly, zci and sci
computed by the dictionary learning stage are used for ini-
tializing the corresponding vectors for the classifier. We ini-
tialize W using the ridge regression [61] with the ‘2-norm
regularizer and quadratic loss:

W ¼ min
W

jjH�Waaijj2 þ �jjWjj22; 8i 2 f1; . . . ; Ng; (15)

where � is the regularization constant. The computation is
done over the complete training data, therefore the super-
script ‘c’ is dropped in the above equation. Similar to the
existing approaches [7], [9], we consider the initialization
procedure as an integral part of the proposed approach.

5 EXPERIMENTS

We have evaluated the proposed approach on two face data
sets: the Extended YaleB [2] and the AR database [1], a data
set for object categories: Caltech-101 [3], a data set for scene
categorization: 15 scene categories [4], and an action data set:
UCF sports actions [5]. These data sets are commonly used in
the literature for evaluation of sparse representation based
classification techniques. We compare the performance of the
proposed approach with SRC [8], the two variants of Label-
Consistent K-SVD [9] (i.e., LC-KSVD1, LC-KSVD2), the Dis-
criminative K-SVD algorithm (D-KSVD) [7], the Fisher Dis-
crimination Dictionary Learning algorithm (FDDL) [10] and
the Dictionary Learning based on separating the Commonali-
ties and the Particularities of the data (DL-COPAR) [11]. In
our comparisons, we also include results of unsupervised
sparse representation based classification that uses K-SVD [6]
as the dictionary learning technique and separately computes
amulti-class linear classifier using Eq. (15).

For all of the above mentioned methods, except SRC and
D-KSVD, we acquired the public codes from the original
authors. To implement SRC, we used the LASSO [63] solver
of the SPAMS toolbox [62]. For D-KSVD, we used the public
code provided by Jiang et al. [9] for LC-KSVD2 algorithm
and solved Eq. (3) with y ¼ 0. In all experiments, our
approach uses the implementation of OMP made public by
Elad et al. [71]. K-SVD, D-KSVD, LC-KSVD1 and LC-
KSVD2 also use the same implementation. The experiments
are performed on an Intel Core i7-2600 CPU at 3.4 GHz

with 8 GB RAM. We performed our own experiments using
the above mentioned methods and the proposed approach
using the same data. The parameters of the existing
approaches were carefully optimized following the guide-
lines of the original works. We mention the used parameter
values and, where it exists, we note the difference between
our values and those used in the original works. In our
experiments, these differences were made to favor the exist-
ing approaches. Results of the approaches other than those
mentioned above, are taken directly from the literature,
where the same experimental protocol has been followed.

For the proposed approach, the used parameter values
were as follows. In all experiments, we chose K ¼ 1:5N for

initialization, whereas co; do; eo and fo were all set to 10�6.

We selected ao ¼ bo ¼ mincjIcj
2 , whereas �so and �ko were set

to 1 and m, respectively. Furthermore, ��o was set to 106 for
all the datasets except for 15 Scene Categories [4], where we

used ��o ¼ 109. In each experiment, we ran 500 Gibbs sam-
pling iterations that proved sufficient for accurate inference
using our approach. We provide assessment of the inference
accuracy of the performed Gibbs sampling in the supple-
mentary material, available online, of the paper. We defer
further discussion on the selection of the parameter values
to Section 6.

5.1 Extended YaleB

Extended YaleB [2] contains 2,414 frontal face images of 38
different people, each having about 64 samples. The images
are acquired under varying illumination conditions and the
subjects have different facial expressions. This makes the
database fairly challenging, see Fig. 5a for a few examples.
In our experiments, we used the random face feature
descriptor [8], where a cropped 192� 168 pixels image was
projected onto a 504-dimensional vector. For this, the projec-
tion matrix was generated from random samples of stan-
dard normal distributions. Following the common settings
for this database, we chose one half of the images for train-
ing and the remaining samples were used for testing. We
performed 10 experiments by randomly selecting the sam-
ples for training and testing. Based on these experiments,
the mean recognition accuracies of different approaches are
reported in Table 1. The results for Locality-constrained Lin-
ear Coding (LLC) [15] is directly taken from [9], where the
accuracy is computed using 70 local bases.

Fig. 5. Examples from the face databases.

TABLE 1
Recognition Accuracy with Random-Face Features

on the Extended YaleB Database [2]

Method Accuracy% Average Time (ms)

LLC [15] 90:7 -
K-SVD [6] 93:13� 0:43 0:37
LC-KSVD1 [9] 93:59� 0:54 0:36
D-KSVD [7] 94:79� 0:49 0:38
DL-COPAR [11] 94:83� 0:52 32:55
LC-KSVD2 [9] 95:22� 0:61 0:39
FDDL [10] 96:07� 0:64 49:59
DBDL+SVM 96:10� 0:25 426:14
SRC [8] 96:32� 0:85 53:12

Proposed 97:31� 0:67 1:22

The computed average time is for classification of a single instance.
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Similar to Jiang et al. [9], the sparsity threshold for K-
SVD, LC-KSVD1, LC-KSVD2 and D-KSVD was set to 30 in
our experiments. Larger values of this parameter were
found to be ineffective as they mainly resulted in slowing
the algorithms without improving the recognition accuracy.
Furthermore, as in [9], we used y ¼ 4:0 for LC-KSVD1 and
LC-KSVD2, whereas k was set to 2:0 for LC-KSVD2 and D-
KSVD in Eq. (3). Keeping these parameter values fixed, we
optimized for the number of dictionary atoms for each algo-
rithm. This resulted in selecting 600 atoms for LC-KSVD2,
D-KSVD and K-SVD, whereas 500 atoms consistently
resulted in the best performance of LC-KSVD1. This value
is set to 570 in [9] for all of the four methods. In all techni-
ques that learn dictionaries, we used the complete training
data in the learning process. Therefore, all training samples
were used as dictionary atoms for SRC. Following [8], we
set the residual error tolerance to 0.05 for SRC. Smaller val-
ues of this parameter also resulted in very similar accura-
cies. For FDDL, we followed [10] for the optimized
parameter settings. These settings are the same as those
reported for AR database in the original work. We refer the
reader to the original work for the list of the parameters and
their exact values. The results reported in the table are
obtained by the Global Classifier (GC) of FDDL, which
showed better performance than the Local Classifier (LC).
For the parameter settings of DL-COPAR we followed the
original work [11]. We fixed 15 atoms for each class and a
set of 5 atoms was chosen to learn commonalities of the clas-
ses. The reported results are achieved by LC, that performed
better than GC in our experiments.

It is clear from Table 1 that our approach outperforms the
above mentioned approaches in terms of recognition accu-
racy, with nearly 23 percent improvement over the error
rate of the second best approach. Furthermore, the time
required by the proposed approach for classifying a single
test instance is also very low as compared to SRC, FDDL
and DL-COPAR. For the proposed approach, this time is
comparable to D-KSVD and LC-KSVD. Like these algo-
rithms, the computational efficiency in the classification
stage of our approach comes from using the learned multi-
class linear classifier to classify the sparse codes of a test

instance. To show the computational benefits of the pro-
posed classifier over SVM, we also include the results of
using SVM on the sparse code features of the query. In the
table, DBDL+SVM refers to these results. Note that, our
classifier also used the same features.

5.2 AR Database

This database contains more than 4,000 face images of 126
people. There are 26 images per person taken during two
different sessions. The images in AR database have large
variations in terms of facial expressions, disguise and illu-
mination conditions. Samples from AR database are shown
in Fig. 5b for illustration. We followed a common evaluation
protocol in our experiments for this database, in which we
used a subset of 2,600 images pertaining to 50 males and 50
female subjects. For each subject, we randomly chose 20
samples for training and the rest for testing. The 165� 120
pixel images were projected onto a 540-dimensional vector
with the help of a random projection matrix, as in Section
5.1. We report the average recognition accuracy of our
experiments in Table 2, which also includes the accuracy of
LLC [15] reported in [9]. The mean values reported in the
table are based on 10 experiments.

In our experiments, we set the sparsity threshold for K-
SVD, LC-KSVD1, LC-KSVD2 and D-KSVD to 50 as com-
pared to 10 and 30 which was used in [7] and [9], respec-
tively. Furthermore, the dictionary size for K-SVD, LC-
KSVD2 and D-KSVD was set to 1,500 atoms, whereas the
dictionary size for LC-KSVD1 was set to 750. These large
values (compared to 500 used in [7], [9]) resulted in better
accuracies at the expense of more computation. However,
the classification time per test instance remained reasonably
small. In Table 2, we also include the results of LC-KSVD1,
LC-KSVD2 and D-KSVD using the parameter values pro-
posed in the original works. These results are distinguished
with the z sign. For FDDL and DL-COPAR we used the
same parameter settings as in Section 5.1. The reported
results are for GC and LC for FDDL and DL-COPAR,
respectively. For SRC we set the residual error tolerance to

10�6. This small value gave the best results.
From Table 2, we can see that the proposed approach per-

forms better than the existing approaches in terms of accu-
racy. The recognition accuracies of SRC and FDDL are fairly
close to our approach however, these algorithms require
large amount of time for classification. This fact compro-
mises their practicality. In contrast, the proposed approach
shows high recognition accuracy (i.e., 22 percent reduction
in the error rate as compared to SRC) with less than 1.5 ms
required for classifying a test instance. The relative differ-
ence between the classification time of the proposed
approach and the existing approaches remains similar in the
experiments below. Therefore, we do not explicitly note
these timings for all of the approaches in these experiments.

5.3 Caltech-101

The Caltech-101 database [3] comprises 9;144 samples from
102 classes. Among these, there are 101 object classes
(e.g., minarets, trees, signs) and one “background” class. The
number of samples per class varies from 31 to 800, and the
images within a given class have significant shape variations,
as can be seen in Fig. 6. To use the database, first the SIFT

TABLE 2
Recognition Accuracy with Random-Face Features

on the AR Database [1]

Method Accuracy % Average Time (ms)

LLC [15] 88.7 -
DL-COPAR [11] 93:23� 1:71 39.80
LC-KSVD1 [9] 93:48� 1:13 0.98
LC-KSVD1z 87:48� 1:19 0.37
K-SVD [6] 94:13� 1:20 0.99
LC-KSVD2 [9] 95:33� 1:24 1.01
LC-KSVD2z 88:35� 1:33 0.41
D-KSVD [7] 95:47� 1:50 1.01
D-KSVDz 88:29� 1:38 0.38
DBDL+SVM 95:69� 0:73 1040.01
FDDL [10] 96:22� 1:03 50.03
SRC [8] 96:65� 1:37 62.86

Proposed 97:47� 0:99 1.28

The computed time is for classifying a single instance. The z sign denotes
the results using the parameter settings reported in the original works.

AKHTAR ETAL.: DISCRIMINATIVE BAYESIAN DICTIONARY LEARNING FOR CLASSIFICATION 2383



descriptors [64] were extracted from 16� 16 image patches,
which were densely sampled with a 6-pixels step size for the
grid. Then, based on the extracted features, spatial pyramid

features [38] were extracted with 2l � 2l grids, where l ¼
0; 1; 2. The codebook for the spatial pyramid was trained
using k-means with k ¼ 1;024. Then, the dimension of a spa-
tial pyramid feature was reduced to 3; 000 using PCA. Fol-
lowing the common experimental protocol, we selected 5,
10, 15, 20, 25 and 30 instances for training the dictionary
and the remaining instances were used in testing, in our
six different experiments. Each experiment was repeated
10 times with random selection of train and test data. The
mean accuracies of these experiments are reported in
Table 3.

For this dataset, we set the number of dictionary atoms
used by K-SVD, LC-KSVD1, LC-KSVD2 and D-KSVD to the
number of training examples available. This resulted in the
best performance of these algorithms. The sparsity level was
also set to 50 and y and kwere set to 0:001. Jiang et al. [9] also
suggested the same parameter settings. For SRC, the error tol-

erance of 10�6 gave the best results in our experiments. We
used the parameter settings for object categorization given in
[10] for FDDL. For DL-COPAR, the selected number of class-
specific atoms were kept the same as the number of training
instances per class, whereas the number of shared atomswere
fixed to 314, as in the original work [11]. For this database GC
performed better than LC for DL-COPAR in our experiments.

FromTable 3, it is clear that the proposed approach consis-
tently outperforms the competing approaches. For some
cases the accuracy of LC-KSVD2 is very close to the proposed
approach, however with the increasing number of training

instances the difference between the results increases in
favor of the proposed approach. This is an expected phenom-
enon since more training samples result in more precise pos-
terior distributions in Bayesian settings. We provide further
discussion on dependence of our approach’s performance
on training data size in the supplementary material, avail-
able online, of the paper. Here, it is also worth mentioning
that being Bayesian, the proposed approach is inherently an
online technique. This means, in our approach, the com-
puted posterior distributions can be used as prior distribu-
tions for further inference if more training data is available.
Moreover, our approach is able to handle a batch of large
training data more efficiently than LC-KSVD [9] and D-
KSVD [7]. This can be verified by comparing the training
time of the approaches in Table 4. The timings are given for
complete training and testing durations for Caltech-101 data-
base, where we used a batch of 30 images per class for train-
ing and the remaining images were used for testing.We note
that, like all the other approaches, good initialization (using
the procedure presented in Section 4.4) also contributes
towards the computational efficiency of our approach. The
training time in the table also includes the initialization time
for all the approaches. Note that the testing time of the pro-
posed approach is very similar to those of the other
approaches in Table 4.

5.4 Fifteen Scene Category

The 15 Scene Category dataset [4] has 200 to 400 images per
category for 15 different kinds of scenes. The scenes include
images from kitchens, living rooms and country sides etc. See
Fig. 7 for examples. In our experiments, we used the Spatial
Pyramid Features of the images, which have been made pub-
lic by Jiang et al. [9]. In this data, each feature descriptor is a
3,000-dimensional vector. Using these features, we performed
experiments by randomly selecting 100 training instances per
class and considering the remaining as the test instances.

Classification accuracy of the proposed approach is com-
pared with the existing approaches in Table 5. The reported
values are computed over 10 experiments. We set the error
tolerance for SRC to 10�6 and used the parameter settings
suggested by Jiang et al. [9] for LC-KSVD1, LC-KSVD2 and

Fig. 6. Examples from Caltech-101 database [3]. The proposed
approach achieves 100 percent accuracy on these classes.

TABLE 3
Classification Results Using Spatial Pyramid Features

on the Caltech-101 Dataset [3]

Total training samples 5 10 15 20 25 30

Zhang et al. [37] 46.6 55.8 59.1 62.0 - 66.20
Lazebnik et al. [38] - - 56.4 - - 64.6
Griffin et al. [39] 44.2 54.5 59.0 63.3 65.8 67.6
Wang et al. [15] 51.1 59.8 65.4 67.7 70.2 73.4
SRC [8] 49.9 60.1 65.0 67.5 69.3 70.9
DL-COPAR [11] 49.7 58.9 65.2 69.1 71.0 72.9
K-SVD [6] 51.2 59.1 64.9 68.7 71.0 72.3
FDDL [10] 52.1 59.8 66.2 68.9 71.3 73.1
D-KSVD [7] 52.1 60.8 66.1 69.6 70.8 73.1
LC-KSVD1 [9] 53.1 61.2 66.3 69.8 71.9 73.5
LC-KSVD2 [9] 53.8 62.8 67.3 70.4 72.6 73.9

Proposed 53.9 63.1 68.1 71.0 73.3 74.6

TABLE 4
Computation Time for Training and Testing

on Caltech-101 Database

Method Training (sec) Testing (sec)

Proposed 1,474 19.96
D-KSVD [7] 3,196 19.90
LC-KSVD1 [9] 5,434 19.65
LC-KSVD2 [9] 5,434 19.92

Fig. 7. Examples images from eight different categories in 15 Scene
categories dataset [4].
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D-KSVD. Parameters of DL-COPARwere set as suggested in
the original work [11] for the same database. The reported
results are obtained by LC for DL-COPAR. Again, the pro-
posed approach shows more accurate results than the exist-
ing approaches. The accuracy of the proposed approach is
1:66 percentmore than LC-KSVD2 on the used dataset.

5.5 UCF Sports Action

This database comprises video sequences that are collected
from different broadcast sports channels (e.g., ESPN and
BBC) [5]. The videos contain 10 categories of sports actions
that include: kicking, golfing, diving, horse riding, skate-
boarding, running, swinging, swinging highbar, lifting and
walking. Examples from this dataset are shown in Fig. 8.
Under the common evaluation protocol we performed five-
fold cross validation over the dataset, where four folds are
used in training and the remaining one is used for testing.
Results, computed as the average of the five experiments,
are summarized in Table 6. For D-KSVD, LC-KSVD1 and
LC-KSVD2 we followed [9] for the parameter settings.
Again, the value of 10�6 (along with similar small values)
resulted in the best accuracies for SRC.

In the Table, the results for some specific action recogni-
tion methods are also included, for instance, Qui et al. [33]
and action back feature with SVM [40]. These results are
taken directly from [13] along the results of DLSI [12], DL-
COPAR [11] and FDDL [10].5 Following [40], we also per-
formed leave-one-out cross validation on this database for
the proposed approach. Our approach achieves 95:7 percent
accuracy under this protocol, which is 0:7 percent better
than the state-of-the-art results claimed in [40].

6 DISCUSSION

In our experiments, we used large values for ��o , because
this parameter represents the precision of the white noise
distribution in the samples. The datasets used in our experi-
ments are mainly clean in terms of white noise. Therefore,

we achieved the best performance with ��o 
 106. In the
case of noisy data, this parameter value can be adjusted

accordingly. For UCF sports action dataset ��o ¼ 109 gave
the best results because less number of training samples
were available per class. It should be noted that the value of
�� increases as a result of Bayesian inference with the

availability of more clean training samples. Therefore, we
adjusted the precision parameter of the prior distribution to
a larger value for UCF dataset. Among the other parame-

ters, co to fo were fixed to 10�6. Similar small non-negative
values can also be used without affecting the results. This
fact can be easily verified by noticing the large values of the
other variables involved in Eq. (12) and (13), where these
parameters are used. With the above mentioned parameter
settings and the initialization procedure presented in Sec-
tion 4.4, the Gibbs sampling process converges quickly to
the desired distributions and the correct number of dictio-
nary atoms, i.e., jKj. In Fig. 9, we plot the value of jKj as a
function of Gibbs sampling iterations during dictionary
training. It can be easily seen that the first few iterations of
the Gibbs sampling process were generally enough to con-
verge to the correct size of the dictionary. However, it
should be mentioned that this fast convergence also owes to
the initialization process adopted in this work. In our
experiments, while sparse coding a test instance over the
learned dictionary, we consistently used the sparsity thresh-
old of 50 for all the datasets except for the UCF [5], for
which this parameter was set to 40 because of the smaller
dictionary resulting from less training samples. In all the
experiments, this parameter value was also kept the same
for K-SVD, LC-KSVD1, LC-KSVD2 and D-KSVD.

It is worth mentioning that our model in Eq. (6) can also
be exploited for simultaneously learning the dictionary and
the classifier. Therefore, we also explored this alternative
for our model. For that, we used the matrix ½X;H� 2
RðmþCÞ�N as the training data, where ‘;’ denotes the vertical

concatenation of the matrices and H 2 RC�N is created by
arranging the vectors hc

i for the training samples. For such
training data, the basis inferred by our model can be seen as

½FF;W� 2 RðmþCÞ�jKj. This approach of joint dictionary and
classifier training is inspired by D-KSVD [7] and LC-
KSVD [9], that exploit the K-SVDmodel [6] in a similar fash-
ion. Since that model is for unsupervised dictionary learn-
ing, its extension towards supervised training by the joint
learning procedure yielded improved classification perfor-
mance for D-KSVD [7] and LC-KSVD [9], as compared to K-
SVD [6]. However, the joint training procedure did not have

Fig. 8. Examples from UCF sports action dataset [5].

TABLE 6
Classification Rates on UCF Sports Action [5]

Method Accuracy% Method Accuracy %

Qiu et al. [33] 83.6 LC-KSVD2 [9] 91.5
D-KSVD [7] 89.1 DLSI [12] 92.1
LC-KSVD1 [9] 89.6 SRC [8] 92.7
DL-COPAR [11] 90.7 FDDL [10] 93.6
Sadanand [40] 90.7 LDL [13] 95.0
Proposed 95.1

TABLE 5
Classification Accuracy on 15 Scene Category
Dataset [4] Using Spatial Pyramid Features

Method Accuracy %

K-SVD [6] 93:60� 0:14
LC-KSVD1[9] 94:05� 0:17
D-KSVD [7] 96:11� 0:12
SRC [8] 96:21� 0:09
DL-COPAR [11] 96:91� 0:22
LC-KSVD2 [9] 97:01� 0:23

Proposed 98:73� 0:17

5. The results of DL-COPAR [11] and FDDL [10] are taken directly
from the literature because the optimized parameter values for these
algorithms are not previously reported for this dataset. Our parameter
optimization did not outperform the reported accuracies.
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a similar effect on our approach. In fact, in our experiments,
the approach presented in Section 4 achieved an average
percentage gain of 0:93, 0:61, 0:32 and 0:50 for AR data-
base [1], Extended YaleB [2], Caltech-101 [3] and 15 Scene
Category database [4], respectively over the joint learning
procedure. This consistent performance gain is an expected
phenomenon for our approach. As mentioned in Section 4.2,
for computational purposes, we assume isotropic precision
Gaussians over the basis vectors in our model. By jointly
learning the classifier with the dictionary, its weights must
also follow the same distributions, as followed by the dictio-
nary atoms. This assumption is restrictive, which results in
a slight degradation of the classification accuracy. The sepa-
rate learning procedures for the dictionary and the classifier
remove this restrictive assumption while keeping the infer-
ence process efficient.

7 CONCLUSION

We proposed a non-parametric Bayesian approach for learn-
ing discriminative dictionaries for sparse representation of
data. The proposed approach employs a truncated Beta pro-
cess to infer a discriminative dictionary and sets of Bernoulli
distributions associating the dictionary atoms to the class
labels of the training data. The said association is adaptively
built during Bayesian inference and it signifies the selection
probabilities of dictionary atoms in the expansion of class-
specific data. The inference process also results in computing
the correct size of the dictionary. For learning the discrimina-
tive dictionary, we presented a hierarchical Bayesian model
and the corresponding inference equations for Gibbs sam-
pling. The proposedmodel is also exploited in learning a lin-
ear classifier that finally classifies the sparse codes of a test
instance that are learned using the inferred discriminative
dictionary. The proposed approach is evaluated for classifi-
cation using five different databases of human face, human
action, scene category and object images. Comparisons
with state-of-the-art discriminative sparse representation
approaches show that the proposed Bayesian approach con-
sistently outperforms these approaches and has computa-
tional efficiency close to themost efficient approach.

Whereas its effectiveness in terms of accuracy and com-
putation is experimentally proven in this work, there are
also other key advantages that make our Bayesian approach
to discriminative sparse representation much more appeal-
ing than the existing optimization based approaches. First,
the Bayesian framework allows us to learn an ensemble of
discriminative dictionaries in the form of probability distri-
butions instead of the point estimates that are learned by
the optimization based approaches. Second, it provides a
principled approach to estimate the required dictionary size
and we can associate the dictionary atoms and the class

labels in a physically meaningful manner. Third, the Bayes-
ian framework makes our approach inherently an online
technique. Furthermore, the Bayesian framework also pro-
vides an opportunity of using domain/class-specific prior
knowledge in our approach in a principled manner. This
can prove beneficial in many applications. For instance,
while classifying the spectral signatures of minerals on pixel
and sub-pixel level in remote-sensing hyperspectral images,
the relative smoothness of spectral signatures [65] can be
incorporated in the inferred discriminative bases. For this
purpose, Gaussian Processes [66] can be used as a base mea-
sure for the Beta Process. Adapting the proposed approach
for remote-sensing hyperspectral image classification is also
our future research direction.
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