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Abstract. One of the key differences between the learning mechanism
of humans and Artificial Neural Networks (ANNs) is the ability of hu-
mans to learn one task at a time. ANNs, on the other hand, can only
learn multiple tasks simultaneously. Any attempts at learning new tasks
incrementally cause them to completely forget about previous tasks. This
lack of ability to learn incrementally, called Catastrophic Forgetting, is
considered a major hurdle in building a true AI system.
In this paper, our goal is to isolate the truly effective existing ideas
for incremental learning from those that only work under certain condi-
tions. To this end, we first thoroughly analyze the current state of the
art (iCaRL) method for incremental learning and demonstrate that the
good performance of the system is not because of the reasons presented
in the existing literature. We conclude that the success of iCaRL is pri-
marily due to knowledge distillation and recognize a key limitation of
knowledge distillation, i.e, it often leads to bias in classifiers. Finally, we
propose a dynamic threshold moving algorithm that is able to success-
fully remove this bias. We demonstrate the effectiveness of our algorithm
on CIFAR100 and MNIST datasets showing near-optimal results. Our
implementation is available at : https://github.com/Khurramjaved96/
incremental-learning.

1 Introduction

To understand incremental learning, let’s look at a simple everyday example.
Suppose that you are taking a walk in a garden and you come across a new
kind of flower. You have never seen such a flower before and are intrigued by it,
so you look up all the information regarding that flower, and learn everything
you possibly can about it. You then continue your walk and come across a red
rose; would you be able to recognize the rose? Assuming you have seen a rose in
the past, the answer is a resounding yes. In fact, the question seems completely
unrelated to the task that you learned recently. However, if an Artificial Neural
Network (ANN) was asked to do the same thing, it won’t be able to answer
the question. Even a network trained to recognize roses with an accuracy of
100% would fail to answer the question if it was not provided samples of roses

https://github.com/Khurramjaved96/incremental-learning
https://github.com/Khurramjaved96/incremental-learning


2 K. Javed, F. Shafait

at the exact moment it was learning about the new flower. This phenomenon
is known as Catastrophic Forgetting and highlights a sharp contrast between
the way humans and neural networks learn; humans are able to attain new
knowledge without forgetting previously stored information. Artificial Neural
Networks, trained using a variation of Gradient descent, on the other hand,
must be provided with data of all previously learned tasks whenever they are
learning something new (It should be noted that humans also have to revise old
tasks eventually to be able to retain knowledge over long periods of times and
that the new knowledge can in fact interfere with older knowledge [24]. However,
the problem is not nearly as pronounced and debilitating in humans as it is in
ANNs.). The goal of incremental learning is to bridge this gap between humans
and ANNs.

The importance of incorporating incremental learning in ANNs is self evident;
not only will it address a key limitation of ANNs and a fundamental AI research
problem, but also provide countless practical benefits such as deploying ever
evolving machine learning systems that can dynamically learn new tasks over
time, or developing classifiers that can handle an ever changing set of classes
(For example inventory of a store).

In this paper, instead of tackling the general problem of incremental learning
of multiple tasks as described above, we limit our discussion to incremental clas-
sifier learning. We believe this is justified because incremental classifier learning
presents most of the same challenges as the general incremental learning prob-
lem, and is at the same time easier to tackle given the current state of ANNs.
Note that we are not the first one to limit ourselves to incremental classifier
learning and as we shall see later in the paper, some of the most popular work
on incremental learning made the same simplifying assumption.

1.1 Our Contributions:

We make three main contributions in this work. First, we analyze the existing
state of the art for incremental classifier learning, iCaRL [21] and make some
insightful observations about the proposed approach. We then propose a novel
Dynamic Threshold Moving Algorithm to address a well known issue of a popu-
lar knowledge transfer and preservation technique called Knowledge Distillation.
Finally, we present a simple solution to address the major issue of lack of repro-
ducibility in scientific literature.

1. Analysis of iCaRL: We thoroughly analyze the current state of the art in-
cremental learning approach proposed by S. Rebuff et al. [21] and show that
some of the improvements resulting from this approach are not because of
the reasons presented by the authors. More specifically, we show that NEM
(Nearest Exemplar Mean) classifier is only effective because the classifier
learned through the training procedure is biased, and by either implement-
ing threshold moving or using higher temperature distillation, it is possible
to remove this bias. As a result, NEM classifier is not a necessary require-
ment for an incremental classifier. The author also proposed an exemplar set



Revisiting iCaRL 3

selection algorithm, called herding, well suited to approximate NCM (Near-
est Class Mean) classifier. We failed to reproduce the effectiveness of herding
in our experiments. In fact, herding did not perform any better than random
instance selection. W. Yue et al. [25] also tried to independently reproduce
the results of herding but failed.

2. Dynamic Threshold Moving Algorithm: We propose an algorithm for
computing a scale vector that can be used to fix the bias of a classifier
trained using distillation loss. The problem of bias resulting from distillation
was first noticed by G. Hinton et al. [8] in their original work on knowl-
edge distillation. However, in their work, they only showed the existence of
a vector S that can be used to fix the bias. They did not provide a method
for computing the said vector. Using our algorithm, on the other hand, it is
possible to compute the said vector at no additional cost.

3. Framework for Future Work: We open-source an implementation of class
incremental learning that can be used to quickly compare existing method-
ologies on multiple datasets. We develop our framework keeping in mind
ease of extensibility to newer datasets and methods, and propose a simple
protocol to facilitate quick reproducibility of results. We hope that future
researchers would follow a similar protocol to complement the already pos-
itive trend of code, data, and paper sharing for quick reproducibility in the
machine learning community.

We are confident that our work clarifies some of the uncertainties regarding
incremental classifier learning strategies, and would act as a stepping stone for
future research in incremental learning. We’re also hopeful that our dynamic
threshold moving algorithm will find other use-cases than that of training a
classifier with distillation. One such potential use-case is to use dynamic thresh-
old for removing bias when transferring knowledge to a student model from a
larger, deeper teacher model.

2 Related Work

The problem of catastrophic forgetting was identified as early as 1989 by Mc-
Closkey et al. [16]. This led to preliminary work on incremental representation
learning in the late 90s [1] [4] [5]. Later in 2013, Goodfellow et al. [6] extended
the work to include current, deeper and more sophistical ANNs by presenting a
thorough empirical analysis of Catastrophic Forgetting.

Methods for incremental classifier learning were also proposed quite early. For
example, T. Mensink et al. [17] demonstrated that by fixing the representation
and using NCM Classifier, it is possible to add new classes at zero additional
cost. C.H Lampert et al. [12] proposed a zero shot learning system that was able
to classify new classes at no cost. However, in both of these methods, the feature
extraction pipeline was not adapted to the new data, and only the classification
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algorithm was changed to incorporate new classes. This limited the performance
of the system as feature extractor trained on one set of classes may not generalize
to a newer set.

The remaining recent Incremental learning techniques can be categorized into
(1) Rehearsal based and (2) Knowledge preserving incremental learning.

2.1 Rehearsal Based Incremental Learning

Rehearsal based incremental learning systems have a pipeline similar to joint
training. They store the distribution of the data of the previously learned tasks
in some form, and use samples from the stored distribution of the previous tasks
to avoid catastrophic forgetting.

The most notable example of the rehearsal based system is iCaRL [21]. ICaRL
stores a total of K number of exemplars from previously seen classes and uses
distillation loss [8] in a way similar to Learning without Forgetting [14] to retain
the knowledge of previous classes. L. David and R. Marc [15] recently proposed
a rehearsal based method that allows for positive backward transfer (i.e, the per-
formance of the system improves on older tasks as it learns new tasks). However,
they assumed that task descriptors are available at test time. This makes their
problem statement only a very special case of ours.

GANs have recently become popular for storing distribution of the data. R.
Venkatesan et al. [23] and W. Yue et al. [25] proposed incremental learning using
GANs. Instead of storing K exemplars similar to iCaRL, they propose training
a GAN that can generate data for the older tasks. They then use this GAN to
generate images of older classes for rehearsal. However, because of the current
limitations of GANs on complex datasets, purely GAN based approaches are not
competitive yet.

2.2 Knowledge Preserving Incremental Learning

The second common category of techniques for incremental learning tries to
retain the knowledge of the network when learning a new class. One recent
approach, proposed by T. Rannen et al. [20] uses auto-encoders to preserve the
knowledge useful for previous tasks. In this approach, the authors propose learn-
ing an under-complete auto-encoder that learns a low dimensional manifold for
each task. When learning new tasks, the model tries to preserve the projection of
data in this low dimensional manifold, while allowing the feature map to freely
change in other dimensions. Oquab et al. [18] proposed that it is possible to min-
imize forgetting by freezing the earlier and mid-level layers of models. However,
this limits the representation learning capability of the system for newer classes.
Some researchers also proposed approaches that kept track of important weights
for older tasks, and made it harder for the model to update those weights when
learning new tasks [27] [10]. Finally, distillation loss [8], inspired by the work
of Caruana et al. [2], can be used for retaining older knowledge. For example,
Zhizhong et al. [14] showed that by computing distillation using a copy of an ear-
lier model, it is possible to retain knowledge of older tasks. Recently, R. Kemker
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and C. Kanan [9] proposed a methodology inspired by the human brain to solve
incremental learning. However in their work, they use a pre-trained imagenet
model as feature extractor and as a result, do not tackle incremental represen-
tation learning. Finally, A. Rusu et al. [22] and T. Xiao [26] proposed networks
that grew as new classes were added to avoid changing weights important for
older tasks. Their method is not memory bounded, however.

3 Overview of iCaRL

Algorithm 1: Herding Algorithm for Instance Selection

1 Input: Trained Model M , Cj
i ∈ Images of class i , Size k;

2 Output: Set containing k instances of class Ci;

3 ∀Cj
i ∈ Ci, use M to get the feature map F j

i ;
4 Let S be a null set;

5 Compute the mean of all F j
i . Let this be Fmean

i ;

6 Select F j
i and add it in S such that mean of selected set is closest to Fmean

i ;
7 If |S| < k, repeat step 5. Else, return S.

In iCaRL, S. Rebuffi et al. [21] define an incremental classifier to satisfy two
properties; First, at any time, the system should be able to give a reasonable
classification performance for the classes seen so far. Secondly, the memory and
computation requirement of the system should stay bounded. To specify the
memory bound of the system, they propose a hyper-parameter K called the
memory-budget of the classifier. This budget specifies how many instances of
the old data, at max, the system is allowed to store at any given time.

In their implementation, they propose storing K
m instances of each class where

m is the number of classes. They call these instances the exemplar set, and use
an algorithm called herding to construct the set. During an increment, they use
both the new data and the stored exemplars to compute two kinds of losses.
One is the standard classification loss computed using the ground truth of the
images, whereas the other is a variant of the distillation loss proposed by Hinton
et al. [8]. In their implementation of the distillation loss, they don’t use the final
softmax layer with softened distribution as originally proposed by G. Hinton.
Instead, they use sigmoid activation for converting final values to probabilities.

To compute the targets for the distillation loss, they propose making a copy
of the classifier just before an increment. Finally, they use the exemplar set to
approximate the mean embedding of each class in the feature space, and use this
approximate mean class embedding for classification at runtime.

3.1 Contributions of iCaRL

The authors claim that their systems work well because of three main contribu-
tions.
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1. They use Algorithm 1 to construct an exemplar set that best approximates
the real class means in the feature space.

2. They propose a new classification algorithm, called Neared Exemplar Mean
(NEM) classifier, for classification. NEM is similar to the well known Nearest
Class Mean (NCM) classifier, except that instead of using true class means
for classification, it uses the mean of the exemplar set. The authors claim that
NEM classifier gives better results compared to the naive classifier learned
through back-propagation during training.

3. They use a variation of distillation loss [8] to transfer knowledge from an
older network to the newer, incremented network. However unlike Learning
without Forgetting [14], they distill knowledge without softening the target
probability distribution from the teacher model.

In the following Section 4, we go over the implementation rationale and de-
tails of the iCaRL system, and in Section 5, we analyze the first wo contributions
made by iCaRL in detail.

4 Implementation Details

We re-implemented the iCaRL paper in PyTorch [19]. To validate our imple-
mentation, we compared our results with the ones reported in the iCaRL paper
and compared our implementation with the open-sourced implementations of
iCaRL. We reimplemented the paper for two main reasons

First, our goal was to develop an extensible code base over which the research
community can easily implement new ideas. To this end, we made sure that the
algorithms, models, and datasets modules were decoupled, and that our design
choices allowed for addition of new models, algorithms, and datasets without
modification of the existing code.

Second, we wanted to introduce a protocol to facilitate quick reproducibility.
To achieve this, our implementation automatically generates a meta-data file
corresponding to every experiment. This file contains all the parameters that
were used to run the experiment, and the hash of the version of the git repository
used for the experiment. This means that the minuscule meta-data file contains
all the information required to reproduce the results, and by simply sharing the
meta-data file along with the paper, the authors would allow others to quickly
reproduce their results.

4.1 Hyper-parameters Selection

For our experiments, we used a variant of Resnet32 [7] modified to work on
CIFAR dataset [11] (Similar to iCaRL). Instead of modifying the model to work
on MNIST [13], we rescaled MNIST images to 32 × 32 to work on the same
model. All the experiments on CIFAR100 are run for 70 epochs per increment
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with an initial learning rate of 2.0 and a momentum of 0.9. The learning rate
is reduced by a factor of five at epoch 45, 60, and 68. For MNIST, we only run
experiments for 10 epochs with an initial learning rate of 0.1 reduced to 0.02 and
0.004 at epoch no 5 and 8. Memory budget of 2,000 is used unless mentioned
otherwise.

5 Analysis of iCaRL

As discussed above, iCaRL makes three contributions. We discuss and analyze
the first two contributions in Section. 5.1 and 5.2 respectively.

5.1 Exemplar Selection using Herding
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iCaRL without Herding

Fig. 1. Comparison of iCaRL results with and without herding. There is no significant
difference between random exemplar selection and exemplar selection by herding for
incremental classifier learning. Here initially the classifier is trained on the first ten
classes of CIFAR100, and then ten new classes are added at each increment.

iCaRL uses the herding algorithm (Algorithm 1) for selecting exemplars that
approximate the true class mean. We implemented the herding algorithm and
tested the performance of the system by toggling herding and keeping all other
parameters the same. We discovered that there was no significant difference in
the results with or without herding, and random instance selection worked as
well as herding. Note that W. Yue et al. [25] also did a similar experiment and
failed to reproduce any improvements resulting from herding. This goes to show
that while the authors think that herding helps in choosing an exemplar set that
gives an exemplar mean close to the true mean, this is in fact not the case. This
makes sense because images chosen to give a good approximation of class mean



8 K. Javed, F. Shafait

at increment i will not necessarily give a good approximation at increment i+ 1
because the feature representation of each image would be different after the
increment.

Experiment Design We follow the same experiment design as iCaRL to com-
pare our results. Initially, we train our classifier on the first p randomly chosen
classes of CIFAR100 dataset. After training, we construct the exemplar sets by
herding or random instance selection for all of the classes that the model has
seen so far, and discard the remaining training data. Finally at each increment,
we use the complete data of the new p classes, and only the exemplar set for the
old classes.

Results Result of our experiments on CIFAR100 with p = 10 can be seen in
Fig. 1. By picking a different order of classes in different runs, we are able to get
confidence intervals. Here the error bars correspond to one standard deviation
of the multiple runs. Note that both random instance selection and herding
give remarkably similar results showing that herding is not necessary for class
incremental learning.

5.2 Classification using Nearest Exemplar-Set Mean Classifier

The authors of iCaRL claim that an approximate variant of Nearest Class Mean
(NCM) classifier that only uses the exemplar set for computing class mean (Let’s
call this NEM for Nearest Exemplar Mean) is superior to the classifier learned
through back-propagation (Let’s call this TC for Trained Classifier). To sub-
stantiate their claim, they experiment with both NEM and TC and demonstrate
that NEM outperforms TC on a number of experiments. For smaller increments
(two), NEM is particularly effective over TC in their experiments.

Hypotheses Development: Because NEM is just a special case of TC, and
in theory, it is possible to learn weights such that TC and NEM are equivalent,
we suspected that this large difference between the two might be because the
newer classes contribute disproportionately to the loss (Because of the class
imbalance; for older classes, we only have the exemplar set). To make matters
worse, distillation is also known to introduce bias in training [8] because the
distilled targets may not represent all classes equally.

Based on these observations, and the hypothesis that NEM performs better
because of bias in training, we predict the following:

1. It would be possible to reduce the difference between TC and NEM by using
higher temperature (T) when computing distillation. This is because higher
values of temperature results in a softer target distribution that represents
all classes more fairly.

2. It would be possible to improve TC by removing the bias by using some
threshold moving strategy.
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We tested both of our predictions experimentally and found conclusive sup-
port for our hypothesis.

Analysis of Prediction 1 First, we train an incremental classifier with tem-
perature of 3 and an increment size of 2. Note that as per the authors of iCaRL,
this is the worst case for TC and without the higher temperature, NEM outper-
forms TC by a large margin. With T=3, however, we discovered that there was
no difference between TC and NEM as shown in Fig. 2 (a) (The performance
was stable across a range of values of T from 3 - 10 in our experiments). In
the original implementation of iCaRL without the temperature parameter, TC
performed significantly worse as shown in Table. 1.
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(a) Bias Removal by Temperature = 3 (b) Bias Removal by Threshold Moving

Fig. 2. (a) Comparison of iCaRL NCM with the softmax trained classifier. It is clear
that by using temperature values of greater than 1, it is possible to remove the bias from
the classifier and get results similar to NEM (iCaRL). (b) Effect of threshold moving
(Scaling) using S on CIFAR100. We used memory-budget of 500 in this experiment to
highlight the bias. Without scaling, iCaRL’s NEM indeed does perform better.

Analysis of Prediction 2 Secondly, we ran an experiment with tempera-
ture = 1 but this time, we scaled the predictions of the model by a vector S
to remove the bias of the classifier (We present the algorithm for computing S
in Section 6). Without the scaling, NEM does indeed perform better as claimed
by iCaRL. However with scaling, the difference between the two is insignificant.
The results of the experiment are shown in Fig. 2 (b).

Conclusion From the two experiments, it is evident that while NEM does in-
deed perform better than TC in some cases, the difference is because of the
learned bias of TC and not because NEM is inherently better for class incre-
mental learning. This is an important distinction because in the original paper,
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the authors attributed the better performance of NEM to the fact that NEM
classifier is not decoupled from the data representation. We show that this is not
the case, and NEM performs better simply because it is more robust to the bias
present at training time.

Table 1. By using softmax classifier with high temperature (T=3), the trained classifier
in our implementation performs as well as NEM. Note that we only show the results
of the worst case scenario for us (i.e, the case when the difference between iCaRL and
Trained Classifier was maximum).

Version iCaRL (NEM) Trained Classifier

iCaRL Implementation 57.0 36.6
Our Implementation with T=3 57.80 58.21

6 Dynamic Threshold Moving

In this section, we present a simple yet effective method for computing a vector
for threshold moving to overcome the bias learned as a result of distillation. We
first give an overview of knowledge distillation, and why distillation loss often
leads to this bias.

6.1 Knowledge Distillation in Neural Networks

Knowledge distillation is a highly popular technique introduced by G. Hinton
et al. [8] to train small networks with generalization performance comparable to
a large ensemble of models. The authors showed that it is possible to achieve
significantly better generalization performance using small neural network if the
small network was optimized to approximate a pre-trained large ensemble of
models on the same task. More concretely, given a large ensemble of models
denoted by Fens(X) trained on xi, yi, where xi and yi, and a smaller neural
network Fsmall(X), it is better to train the smaller network on (xi, F

T
ens(xi))

instead of on the original data (xi, yi). Here parameter T denotes that the factor
by which the pre-softmax output of the model is divided by before applying the
final ’softmax’. In practice, it is better to jointly optimize to approximate the
output of the larger model, and for the ground truth labels by a weighted loss
function.

Why Distillation Can Introduce Bias: When computing distillation loss,
we do not use the ground truth labels of the data points. Instead, we use the
output of a model as labels. This can be problematic because the data corre-
sponding to new classes can be more similar to some older classes than others.
For example, if in an animal classifier one of the class is a whale, and others
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are terrestrial animals, and the new classes are also all of terrestrial animals,
the older model would most probably assign a near zero probability of whale
to the new images. This would introduce a bias against the whale class and re-
sult in poor performance of TC on whales. This problem of bias was noticed by
G.Hinton et al. [8] in their original paper as well. However, instead of proposing
a strategy to remove this bias in a practical setting, they were only interested
in showing the existence of a vector that can be used to remove the bias. As
a result, they found a scaling vector by doing a grid search over the test set.
It’s understood that we can not do such a search on the test set in a practical
setting.

6.2 Threshold Moving

Threshold moving is a well-known technique to tackle the issue of class imbal-
ance. Buda et al. [3] showed that threshold moving is effective in removing bias
in ANNs. However, a measure of imbalance is required to apply the technique. In
simple cases, the degree of imbalance can simply be measured by the frequency
of instances of each class in the training set. In case of distillation, however, it is
not clear how we can compute such a scaling vector because some classes might
have zero frequency. Inspired by the loss function used for distillation, we pro-
pose that by simply measuring how much each class contributes to the target,
it’s possible to compute the scale vector.
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(a) Temperature = 2 (b) Temperature = 5

Fig. 3. Result of threshold moving with T = 2 and 5 on the unmodified test set of
MNIST. We train our model after removing all instances of a certain no of classes (x-
axis) from the train set, and only distill the knowledge of these classes from a teacher
network trained on all data. Note that different scale is used for the y axis for a and
b because using higher temperature results in softened targets and consequently, less
bias.
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6.3 Algorithm for Scale Computation:

Let F (xi) be the model that outputs the probability distribution over N classes
i.e, ∀xi ∈ X, F (xi) = P (n|xi) where 0 <= n < N . Suppose now that we want
to find another model, G(X), that gives a distribution over the old N classes
and k new classes. Furthermore, we want to find G given only the data of the
k new classes, and the original model F (X). Finally, let yi be ground truth of
new classes and D be the training dataset. Z. Li and D. Hoiem [14] showed that
we can train such a model minimizing the following loss function:∑

xi,yi∈D
(1− γ)× Centropy(G(xi), yi) + T 2γ × Centropy(GT (xi), F

T (xi)) (1)

where Centropy is the cross-entropy loss function and D is the training dataset.
Here we multiply the distillation loss by T 2 as suggested by G. Hinton et al. [8]
to keep the magnitude of gradients equal as we change the temperature T.

This loss function, however, results in a biased classifier as discussed above.
We demonstrate that scaling the predictions of G(X) by a scale factor S given
by the following equation is effective for bias removal.

S =
∑

xi,yi∈D
(1− γ)× yi + T 2γ × FT (xi) (2)

Note that Equation. 2 for scale vector computation is very similar to the distil-
lation loss described in Equation. 1. In fact, the scale vector is simply the sum
of target probability distributions in the cross entropy loss.

Our final prediction G′(X) is then given by:

G′(X) = G(x) ◦ ‖S‖
S

(3)

Where ◦ represents point-wise multiplication. Due the similarity between Equa-
tion 1 and Equation 2, it is possible to compute S during training at no additional
cost.

6.4 Intuition Behind the Algorithm

An intuitive understanding of Equation 2 is that we are measuring the relative
representation of each class in the training targets. More concretely, we are
computing the expected value of predictions made by a model trained using
Equation. 1. When we scale our class predictions by the reciprocal of the expected
value, we are effectively normalizing the class predictions such that expected
value of predicting each class is equal. This in turn removes the bias introduced
during training.
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Fig. 4. Confusion matrix of results of the classifier with (right) and without (left)
threshold moving with T=2. We removed the first five classes of MNIST from the
train set and only distilled the knowledge of these classes using a network trained
on all classes. Without threshold moving the model struggled on the older classes.
With threshold moving, however, not only was it able to classify unseen classes nearly
perfectly, but also its performance did not deteriorate on new classes.

6.5 Experiment Design

To highlight and isolate the performance of our dynamic threshold moving algo-
rithm, we first train a model on all the classes of MNIST dataset. We then train
another randomly initialized model after removing p randomly chosen classes
from the MNIST dataset and use the first model to distill the information of
the older classes. Note that the second model does not see any examples of the
removed classes at train time. Finally, we test the second model on all classes
of MNIST. We run this experiment for T equal two and five (The difference is
visible for other values of T as well; we only choose two due to lack of space).

6.6 Results

The results of the above-mentioned experiments can be seen in Fig. 3. As evident
from the figures, the accuracy of the Trained Classifier drops significantly as we
remove more classes. However by simply scaling the predictions of the classifier,
it is possible to recover most of the drop in the accuracy and achieve near optimal
NCM classifier results (Note that NCM Classifier uses training data of all the
classes at test time to find the mean embedding and as a result, is an ideal
classifier).

A more detailed picture of the bias can be seen in Fig. 4. The confusion
matrix correspond to x = 5 in Fig. 3 (a). It can be seen that without scaling,
the model is struggling on the unseen classes. However after removing the bias,
it can classify all 10 classes accurately. This is interesting because it shows that
the model always had the discriminatory power to classify all classes and was
performing poorly mainly because of the bias.
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We further note that higher values of T results in smaller bias. Note that
this is reflected in our computation of S in Equation. 2 where higher values of
T lead to softened targets FT (xi) resulting in S with values closer to one.

Finally, results of threshold moving on CIFAR100 are shown in Fig. 2 (b).
Again, we notice that our dynamic threshold algorithm is able to improve the
performance of Trained Classifier to Trained Classifier Scaled.

7 Conclusion

In this paper, we analyzed the current state of the art method for class incremen-
tal learning, iCaRL, in detail. We showed that the primary reason iCaRL works
well is not because it uses herding for instance selection, or Nearest Exemplar
Mean classifier for classification, but rather because it uses the distillation loss
on the exemplar set to retain the knowledge of older classes. We also proposed
a dynamic threshold moving algorithm to fix the problem of learned bias in the
presence of distillation, and verified the effectiveness of the algorithm empirically.

Finally, we release our implementation of an incremental learning framework
implemented in a modern library that is easily extensible to new datasets and
models, and allows for quick reproducibility of all of our results. We strongly
believe that given the current state of research in the computer vision community,
there is a strong need for analyzing existing work in detail, and making it easier
for others to reproduce results and we hope that this work is a step in that
direction. An anonymized version of our implementation is available at: https:
//github.com/Khurramjaved96/incremental-learning.
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