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ABSTRACT With the advent of smart grid, load forecasting is emerging as an essential technology to
implement optimal planning and control of grid assets. Ergo in recent years, a significant thrust can be
witnessed for the research towards the improvement of the prediction of the energy demand. However thus
far there has not been any one technique in the literature that is shown to give best forecasts for a variety
of sites; almost all the papers published on load forecasting, report their best results on just one of the
dataset. This problem accentuates further when the training data does not have enough data points to learn
patterns over all the seasons. Hence to devise a load forecasting technique that can yield the best estimates
on diverse datasets, especially when the training data is limited, is a big challenge, which is addressed in this
paper. The paper presents a novel combination of deep learning with feature engineering for short-term load
forecasting. The proposed architecture, named as Deep Derived Feature Fusion (DeepDeFF), is based on the
sequential model in conjunction with the hand-crafted derived features in order to aid the model for better
learning and predictions. The raw data and the hand-crafted features are trained at separate levels, then their
respective outputs are combined to make the final prediction. The efficacy and robustness of the proposed
methodology is evaluated on diverse datasets from five countries with completely different patterns. The
extensive experiments and results demonstrate that the proposed technique is superior to the existing state

of the art.

INDEX TERMS Load forecasting, smart grids, deep learning, feature engineering, sequential models.

I. INTRODUCTION

Smart grid, in simple terms, implies monitoring and control
of the power system’s assets in the generation, transmission,
distribution, and utilization, to achieve high efficiency and
reliability at low operational costs. Several cardinal aspects
of smart grid planning and control, such as the aggrega-
tion of distributed energy resources, economic scheduling of
generation units, and demand side management etc., require
the estimation of the upcoming energy demand [1], [2]. The
load forecasting however is quite a complex problem and
the prediction error for one site can be drastically different
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for the other not only due to the size of the available data but
also due to the difference in demand profiles over diurnal,
seasonal and yearly scale.

Artificial intelligence is fast becoming an enabling tech-
nology for data analytics and enhanced control of modern
power systems. One of its most sought after application in
recent times is the load forecasting through machine learning
for predicting the trends in energy demand. This can lead to
proactive optimization of control decisions to achieve higher
energy efficiency, longevity of assets lifetime, and lower
operational cost.

Long-term [3], mid-term [4], and short-term [5] are the
different types of load forecasting found in the literature
based on their duration of prediction from years to minutes.
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The advantage of Short-term load forecasting (SLF) is that
it provides better insight into the electricity consumption
patterns and a greater degree of freedom for demand-side
management. Also, SLF can be aggregated to get mid-term
and long-term forecasts. Therefore this paper focuses only
on SLF.

Despite having SLF being a preferred method for electric-
ity load management, it is more difficult than the mid and long
term forecasting because of the greater variance in the respec-
tive energy consumption patterns [6]. The high variance in
the respective energy consumption patterns is due to the fact
that the individual household energy consumption patterns
can vary depending on the daily routines of the customers,
and the short monitoring period producing a high frequency
energy consumption graph. Another reason why individual
house hold energy consumption forecasting is challenging
is because of the unique nature of the energy consumption
pattern of each household. This makes it hard to create a
single generalized model that can adjust to the consumption
patterns of each household. In this work the individual models
for each household are trained for forecasting.

The deep learning based models, esp. the sequence mod-
els, are highly effective models for time-series analysis and
forecasting. Their ability to process long range context and
to traverse the data in both forward and backward directions
(bi-directional sequence models) make them a suitable can-
didate for this purpose. The main challenge of using deep
learning based algorithms is the availability of large and
diverse data. To be able to utilize them effectively for load
consumption forecasting, they should be able to process the
following variations in the data:

o The data should be available for a season in multiple
variations (data spread over years) so that there are
variations in monthly consumption.

o The data resolution also contribute significantly in
uncovering the underlying patterns, that is, the data on
hourly or minute scale should be available.

« If the data for individual house loads is considered, then
a wide variety (large sample size) of household should
be present in the data.

The availability of dataset with above-mentioned properties
is challenging and extremely hard to gather. The limitation of
required data with sufficient diversity make it challenging to
train a deep learning based sequential model and to exploit
its prowess. The data availability for SLF is of few months
data to train the model and then to predict the energy load for
months that are not seen during training. This type of data is
referred to as a limited dataset, where the test data contains
features that were not seen by the model during training, thus
making it harder for the deep learning models to learn the
underlying patterns [6].

In practice, deep learning community tackle these limita-
tions in a variety of ways.

« Data Augmentation: The first and foremost technique

is to employ data augmentation in increasing the training
data size by adding artificial data points. This techniques
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has been quite successful in computer vision domain
where images can be rotated, zoomed, scaled, etc.,
to increase the data size. This technique has not been
explored in time-series analysis.

o Transfer Learning: The second successful techniques
employed in computer vision is transfer learning, where
a model trained on a very large dataset is further
fine-tuned with small subset of a new domain to exploit
the already learned weights. There is no such general
purpose models proposed in load forecasting domain.

« Feature Engineering: The third method reported in the
literature to circumvent the dataset limitations is the
use of hand-crafted features along with deep learning
models. The deep learning models when aided with
hand-crafted features are reported to perform better with
limited dataset. The main hypothesis behind this method
is to augment the deep learning algorithm with powerful
statistical features so that the model can learn the under-
lying complex features in a better way.

The third method is adopted here to circumvent the limited
data availability in case of short term load forecasting.

This paper presents a novel deep learning architecture that
combines the use of hand-crafted features with raw data,
such that the deep learning model can work well for SLF
of small datasets. It also proposes to use Mean Average
Percentage Error (MAPE) as the preferred loss function. The
results demonstrate significant improvements in the perfor-
mance, especially for limited datasets by using the proposed
architecture.

In summary, following are the contributions of this
research work.

o Derived Handcrafted Features:It is proposed to
fuse both basic and derived features (explained in
Section III). The proposed fusion resulted in better
results as reported in V. It should be noted that our
work could be extended to include more features like
temperature and humidity and stats derived from these
basic features to further improve the sequential models.

o Novel Sequential Model: A novel Y-Shaped sequen-
tial model based on Recurrent Neural Networks (RNN)
and its variants Long Short-Term Memory (LSTM)
Networks and Gated Recurrent Units GRU) has been
reported. The proposed architecture fuses both basic and
derived features and could be extended to include more
features. Please refer to 3 for further details.

o Better Loss Function: It is proposed to use Mean
Average Percentage Error (MAPE) as the loss function
instead of Mean Absolute Error (MAE) while training
the sequential models. The advantage of using MAPE
as the loss function is because MAPE helps in better
generalization of the model. It is observed that using
MAPE as loss function strongly penalizes the model
for predicting higher than actual values, thus making it
follow the general pattern of the energy consumption,
and ignore the outliers. This setting is important to deal
with individual households that have high variances and
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peaks in their energy consumption data. Using MAPE
as loss function helps in getting a smooth and a reliable
prediction.

This article is further organized as follows: Section II
provides an overview of research work that has been done
in this domain, Section III provides all the necessary details
of the proposed DeepDeFF method. Section IV provides an
introduction to all the datasets that have been used to evaluate
the proposed methodology and Section V reports the results
obtained on individual dataset along with comparative anal-
ysis with other reported methodologies. Section VI discusses
the edge cases where our method fails and where it can be
improved further. Section VII concludes the article with a
brief summary and future outlook.

II. LITERATURE REVIEW

A significant amount of research has been carried out to
develop SLF as the enabling tool for efficient monitoring and
control of power system.

Santos et al. [7] proposed the use of feature engineering to
design a feature vector by performing entropy analysis with
a specific tolerance band and auto-correlation function. The
designed feature vector was then passed through an artificial
neural network (ANN) for prediction. Ferreira and da Silva
used a Bayesian based approach to solve the complexity of
neural network and variable selection [8]. The approach has
theoretical ground but relies on various assumptions regard-
ing the network parameters distribution and requires three
relevance thresholds. Phase-space embedding method was
used for the selection of input variable which allowed to
include the preference of the past values of prediction quan-
tity in the input vector [9]. A neural networks based approach
to forecast next 24 hour load on medium and low voltage
substations was presented in [10]. The use of separate models
each for daily average power and for intraday variation in
power, improved the accuracy of prediction compared to the
model based on time series.

Cao et al. [11] adopted autoregressive integrated moving
average (ARIMA) model and similar day method for intraday
load forecasting. The mechanism of their similar day method
is to group the targeted day with meteorologically similar
days in the history and predict the load based on the average
demand of those days. It was demonstrated that in ordinary
days, ARIMA performs better while similar day method wins
in unordinary days. Li ef al. [12] demonstrated the use of
extreme learning machines (ELMs) for short term load fore-
casting. The pitfall of a single ELM is that the output is usu-
ally unstable due to the randomness in its training. Zang et al.
proposed an ensemble of extreme learning machines (ELMs)
to forecast the total load of the Australian national energy
market. The proposed methodology not only made use of the
supreme ELM learning efficiency for self-adaptive learning
but also used the ensemble structure to mitigate the insta-
bility of the forecasts. Recently, k-nearest neighbour (KNN)
algorithm had also seen some successful examples on load
forecasting. Al-Qahtani and Crone [13] proposed multivariate
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k-NN regression method and Zang et al. [14] proposed an
ensemble of KNN models for day ahead load forecasting. The
dominant advantage of using KNN algorithm is its efficiency.

Recently recurrent neural networks (RNN) have become
the popular choice for load forecasting. In [15] machine
learning models were used for predicting the energy demand
on publicly available RTE dataset [16]. The performances
of RNN and support vector machine (SVM) models were
compared using different input features. The models were
evaluated on a test set of 10 days of year 2017. The results
demonstrated that RNN performed better, with a MAPE
of 3.52%, compared to SVM with a MAPE of 14.00%.

A recent study [6] demonstrated how the individual house-
hold level load forecasting can be challenging because of
different patterns of energy consumption of individual con-
sumers [17]. A two layer LSTM model was proposed and
compared with other models based on back-propagation neu-
ral network (BPNN), k-nearest neighbour (KNN), extreme
learning machine (ELM) and input scheme combined with
a hybrid forecasting framework (IS-HF). Individual models
for each household were trained and the best average MAPE
of 44.06% was achieved through LSTM. Alhussein et al. [18]
proposed a Hybrid CNN-LSTM for individual household
level load forecasting in SGSC. In the proposed approach the
CNN was used to extract the complex relationship between
the input variables while LSTM was used for sequence learn-
ing. They achieved the MAPE of 40.38%.

Electricity demand is influenced by weather, holiday,
time of day, etc. Time dependant convolution neural net-
work (TD-CNN) and cycle based long short term memory
(C-LSTM) for short- and medium-term load forecasting was
presented in [19]. Electric load on weekly basis was arranged
in image format and fed to TD-CNN model. C-LSTM helped
to extract time dependencies between sequences. The models
performed better than the traditional LSTM model while
reducing the training time.

Another important application of SLF is in energy trading,
which is a complex process due to non-periodic variations
in energy consumption. Accurate forecasting for hourly spot
price is the key to achieve the best trading decision, which is
vital for investors and retailers in electricity market. A model
based on a hybrid approach comprising of ARIMA, mul-
tiple linear regression (MLR), and Holt-Winter model was
proposed in [20]. The hybrid model was tested for Iberian
electricity market dataset to forecast hourly spot prices for
various numbers of days. A hybrid model based on non-linear
regression and SVM was proposed in [21], that was tested
on ERCOT data [22]. This hybrid model achieved MAPE
of 7.30% compared to the individual models with 8.99% and
8.63% MAPE respectively.

Improvement of forecasting accuracy using standard
LSTM model by feeding it processed features rather
than raw data was proposed in [23]. The power load
sequence was decomposed by complementary ensemble
empirical mode decomposition (CEEMD), then the approx-
imate entropy (AE) values of the obtained subsequences
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FIGURE 1. Internal architecture of individual cells in a sequence models. RNNs take input from current and previous timestamp and combine them using
tanh activation function. An LSTM cell has three gates: input, forget, and output, while GRU cells have two gates: reset and output. Both LSTMs and GRUs
were designed to overcome the so-called Vanishing Gradient Problem, that is the perseverance of long-term context. GRUs are relatively less complex

and more efficient than LSTM Networks.

were calculated. The subsequences with similar AE values
were merged into new sequence to form the inputs of the
load forecasting model. This reduced the complexity of the
power load sequence and improved the accuracy of load
forecasting. The vanilla LSTM network was improved in [24]
by cleaning and processing the raw load data using isolated
forest algorithm.

Electric load forecasting requires training of large number
of neurons in hidden layer, which increases the size of the
network and slows overall training process. To reduce this
overhead, a multi-column radial bias function (MCRF) with
error correction algorithm designed to reduce the number of
hidden neurons in a network, was proposed in [25]. It was
shown that MCRF with only 50 neurons in hidden layer took
only 10 minutes to train and achieved the MAPE of 4.59%
compared to other models with more than 150 neurons that
achieved better MAPE of 1.77% but took hours to train.

Accuracy of SLF can be improved through careful analysis
of the load data to find the effectiveness of selected fea-
tures. A technique was proposed in [26] for features selection
where the bisecting K-means algorithm was used to cluster
the load data with high similarity for a forecast date. The
ensemble empirical mode decomposition (EEMD) helped to
combine components with similar entropy. A bidirectional
recurrent neural network (BRNN) model was proposed to
forecast the load of the network. The model was verified on
two datasets including a dataset from load forecasting compe-
tition. The results showed that BRNN model performed better
even than the winner of the competition.

Recently introduced PRECON dataset [27] presents
another phenomenon of power outages that is uncommon in
developed countries. In [28], the authors explored the chal-
lenges of dealing with the problem of power outages while
doing the short term load forecasting. The main challenge
of including the power outage data is the presence of long
range 0 KW in the data, thereby increasing the complexity
of data. They achieved the Mean Percentage Error (MPE) of
—496.70 using Support vector regression (SVR).

The use of sequence models and feature engineering has
shown to increase the forecast accuracy. However both con-
cepts have been explored separately. The proposed approach
examines the effects of combining the concepts of feature
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engineering and sequence modeling in the context of Short
Term Load Forecasting. This work, in essence, is aligned with
that reported in Hybrid CNN-LSTM [18]; however, instead of
asking a CNN to act as feature extractor that requires a lot of
data, hand-crafted features have been used to train a novel
sequence model architecture.

ill. PROPOSED METHODOLOGY

Recently deep learning solutions [6], [19], [29], particu-
larly sequential models such as RNN and LSTM models are
becoming popular choices for load forecasting. Recurrent
Neural Networks are a generalization of feedforward neural
networks that have an internal memory. RNNs performs the
same function for every input of data while the output of the
current input depends on the previous inputs’ computation.
After producing the output, it is copied and sent back into
the network. For making a decision, it considers the current
input and the output from the previous inputs. RNNs take
input from current and previous timestamp and combine them
using fanh activation function. An LSTM cell has three gates:
input, forget, and output, while GRU cells have two gates:
reset and output. Simple RNN faces the problem of gradient
vanishing and exploding and therefore cannot remember long
sequences. Long Short-Term Memory (LSTM) [30] networks
and Gated recurrent units (GRUSs) [31] are a modified version
of recurrent neural networks, which makes it easier to remem-
ber past data in memory. The GRU is similar LSTM with a
forget gate, but has fewer parameters than LSTM, as it lacks
an output gate. Fig. 1 describe the inner computations of each
model in more detail.

A. BIDIRECTIONAL SEQUENTIAL MODELS
Bidirectional model trains forward and reverse nodes using
respectively:

« input in positive time, i.e. the given input as it is,

« input in negative time, i.e. a time-reversed copy of the

original input.

The advantage of bidirectional model compared to conven-
tional ANN models is that it observes the input in both
forward and reverse directions to extract more information
from the input sequence (Fig. 2). This technique of negative
time and bidirectional layer was first discussed in [32].
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FIGURE 2. Bi directional sequence models. The figure shows the example with LSTM cells, but these cells can be any of RNN or GRU types.

This paper reports the results of using all three sequential
models: LSTM, RNN, GRU as well as their bidirectional
counterparts (BLSTM) [33], BRNN and BGRU on several
datasets for a comprehensive comparison.

B. CONVERTING DATA INTO SEQUENCE

To understand how the model works, first it is important to
understand how the input sequence is constructed. The input
data can have the following attributes: time interval, date,
month, energy load etc. The data has to be converted into a
sequence so that it can be fed to the proposed architecture
for the prediction of load at the next time interval. Sequential
models like RNN, LSTM, BLSTM etc. require input data of
past time-steps to extract their features and their temporal
information to make prediction of the next time step. To make
the data usable for training such a model, the data must be
converted into input sequences. This conversion is done by
concatenating the current input features f with the past r — 1
input features, where f is the length of feature vector and K
is the number of time-steps used for making the prediction.

C. HAND-CRAFTED FEATURE SELECTION

In this work, the input features are divided into two different
types: basic and derived. The basic features include electricity
load consumption for the residential customers, hour of the
day, day of the week and holiday indicator. The derived
features, as their names suggests, are calculated from the
basic features. Both type of features are important in load
forecasting. The basic features provides the absolute values
of different parameters, while the derived features exploits the
correlation between different values and help the deep learn-
ing models to learn the relationship or a pattern, esp. in situ-
ations where the data availability is limited (non-repetitive or
sporadic data).

A deep learning model with enough computation time and
data may extract derived features on its own, but this cannot
be guaranteed within the constraints of time and resource.
Thus providing these derived features explicitly as inputs can
enable the model to learn more from the data and converge
quickly. Generally the performance of deep learning models
improve by increasing the number of relevant input features
unless it starts to overfit.
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The basic features used for generation of derived features
and as input for the DeepDeFF model are:

o Energy load consumption E.

o Time-stamp of the day 7, divided into 30 minutes
interval each. The feature is converted into One-hot
encoding.

o Current day of the week W, converted into one-hot
encoding.

« Holidays represented by a binary label H. At the
moment only weekends are marked as holidays, but in
future work this can be expanded and synced with other
public and national holidays.

There could be other basic features, for example, temperature
and humidity values for each day, but that has not been
considered in this work to remain consistent with the other
referenced papers.

Derived features are calculated for each record in the input
sequence (I, K, f), where K represents the number of past
records used for creating the input sequence and f represents
the basic features. Only the derived features for the energy
load consumption, E, have been considered in this work.
Following are the derived features that are calculated and used
as input to the DeepDeFF model.

« Average load consumption of K time-steps.

« Standard deviation of load consumption of K time-steps.

« Average load consumption of the time-stamp ¢ that is to
be predicted, for past K days.

o Standard deviation of load consumption of the
time-stamp ¢ that is to be predicted, for past K days.

D. PROPOSED ARCHITECTURE

This paper proposes a Y-Shaped sequential model architec-
ture DeepDeFF (Fig. 3 shows the schematics of the Deep-
DeFF architecture), which inputs the raw and derived input
features into separate layers to extract learned features. The
idea behind using separate input layers for basic and derived
sequences is to allow the sequential layers to learn from the
two input sequences independently. The goal is to exploit the
relevance of basic and derived sequences with the predictions
individually. The learned representation from the individual
sequential layers is then merged and fed to a dense layer. It is
noted that both sequential layers in our Y-shaped sequential
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FIGURE 3. Proposed System Architecture: The input data is first pre-processed to achieve the derived input features. The raw input features 7, W,
H are converted to one-hot encoding. The raw and derived input features are then fed to two individual bi-directional sequential layers. The
information extracted from these separate layers is then merged and used as input to a dense layer followed by a final feed forward layer with

Linear activation function.

model are identical. The dense layer or fully connected layer
consists of n nodes with Rectified Linear Unit (ReLU) acti-
vation, the best value of n is determined experimentally. The
purpose of dense layer is to non-linearly merge the informa-
tion extracted from basic and derived features. The output of
a dense layer is processed through a linear activation output
layer to make the final prediction of the load at the next time
interval.

E. HYPER PARAMETER SELECTION

The focus of experiments and results presented in this paper
is to demonstrate the efficacy of the proposed technique for
various datasets, orthogonal to the hyper-parameters opti-
mization. The tuning of hyper-parameters is not extensively
explored here. The Adam optimizer, No. of hidden layers and
No. of nodes in a hidden layer have been adopted from [6],
which provides the rationale for the selection of these com-
ponents. However the choice for the internal parameters of
Adam optimizer, such as epsilon, amsgrad, f1, is not men-
tioned in [6]. The Epsilon effects the numerical stability, this
parameter is not considered for tuning here. For the rest of
the parameters, the authors have performed experiments on
SGSC dataset (the datasets are described in the next section)
over a range of candidate values to find the optimal ones
yielding best results. The amsgrad is a boolean - whether to
use the AMSGrad variant of the Adam algorithm or not - so
the experiments were performed with both False (default
value in Keras implementation) and True values; the default
value resulted in better MAPE score. The value of 81 - expo-
nential decay rate of the moment estimates - is swept from 0.5
to 0.99. Although the best MAPE was found at the value of
0.95, but here in this paper 0.9 is chosen which happens to be
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the default value in Keras and also sets the same benchmark
for comparison with the reference paper [6].

Consequently the hyper-parameter settings in this
manuscript is as follows:

(a) 20 nodes sequential layer
(b) a dropout of 0.2

(c) Adam optimizer

(d) MAPE as loss function
(e) Learning rate: 0.001

Same set of hyper-parameters is then kept for all the datasets
in this manuscript for the very reason to prove that even
without an extensive hyper-parameter tuning, the proposed
technique can yield superior results on diverse datasets.
So by keeping the same architecture for each dataset and yet
achieving the results better than the published state-of-the-art,
the supremacy of the proposed framework is truly established.
Nonetheless, the hyper-parameters tuning can be carried out
in future work.

IV. THE DATASETS

The proposed methodology for SLF has been evaluated on
five energy load datasets from different sources. This section
provides the salient parameters of the dataset and presents the
pre-processing technique adopted for each.

A. SMART GRID SMART CITY (SGSC) DATASET

SGSC project was initiated by the Australian Government
in year 2010 [17]. It gathered smart-meter data from around
78,000 customers for a period of 4-years. In [6], individ-
ual models for each customer was proposed. However since
it is not feasible to train individual models for ~78,000
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customers, therefore 69 customers having ‘“hot water sys-
tem” were selected. The same subset is extracted here to
evaluate the DeepDeFF architecture.

B. THE ALMANAC OF MINUTELY POWER

DATASET (AMPds)

AMPds [34] contains electricity, water and natural gas mea-
surements of a single Canadian household with 19 appli-
ances, recorded for 1 year with 1 minute resolution, which
is down-sampled to 30 minutes resolution [29]. The variables
for raw features used here are the same as for SGSC except
that E here is assigned to the Ampere reading.

C. RESEAU DE TRANSPORT D’ELECTRICITE (RTE)

FRANCE DATASET

RTE dataset [16] is also used here to evaluate the pro-
posed technique. The dataset used spans from year 2013 to
2016 with the sampling interval of 30 minutes. The raw inputs
are programmed with same variables as for SGSC above.

D. THE ELECTRIC RELIABILITY COUNCIL OF

TEXAS (ERCOT) DATASET

ERCOT dataset [22] provides real time and historical statis-
tics surrounding independent system operator (ISO) opera-
tions of the Texas region for a period of ~5 years recorded
every 1 hour. The raw features variables used here are
the same as for SGSC except that the time 7 here ranges
1-24 since the resolution is 1 hour.

E. PAKISTAN RESIDENTIAL ELECTRICITY

CONSUMPTION (PRECON)

PRECON dataset [27] records the electricity consumption
patterns in a developing country for 42 households of varying
financial status, daily routine and load profile. The data is col-
lected with 1 minute interval from 01-06-2018 to 31-09-2019.
The amount of data varies for each household due to different
number and types of appliances that are selected for monitor-
ing. This dataset also captures the problem of power outages
rampant in developing countries. This is evident from several
long OKW data intervals. For raw features, same variables as
in SGSC are used here except that E here refers to the KW
usage.

V. RESULTS

The proposed framework for SLF is achieved through an
evolutionary process after numerous rigorous experiments on
all five datasets. This section discusses these experiments in
sufficient detail and infers the results obtained. The results
from the DeepDeFF architecture (all six variants) are com-
pared with the results of other sequential models proposed
in [6] and [18]. All six variants are same in overall architec-
ture; the only difference between them is the use of different
cell (RNN, LSTM, or GRU) in the sequential layer and their
bi-directional counterparts (BRNN, BLSTM, or BGRU). The
sequential layers, as mentioned previously, are identical in all
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experiments. Different cells can be used in both layers, but
this work keeps all as same for simplicity.

The authors of this paper have re-implemented some other
methods referred in the literature, such as, KNN, ELM,
BPNN; the results have been reported on the same test data as
used for DeepDeFF architecture. The authors also tested the
methodology with other variants of sequential models -RNN,
LSTM, GRU, BRNN, BLSTM and BGRU - similar to one
proposed in [6] without using the hand-crafted features.

Following sub sections report the results and comparative
analysis for different datasets individually. It is important to
understand the difference between the reported results with
respect to different timestamps. 2-timestamps means that the
future value is predicted using the previous 2 points only.
Similarly, 6-timestamps and 12-timestamps mean that the
future values are predicted using the previous 6 and 12 data
points respectively.

For SGSC and AMPds datasets, the results have been
reported for three different timestamps, 2, 6, and 12. How-
ever, the last three datasets, RTE, ERCOT, and PRECON are
evaluated using only 2-timestamps because it was observed
that the best predicted values corresponds to 2-timestamps on
first two datasets.

A. SGSC DATASET

1) TRAIN & TEST SETTING
The same settings provided in [6] are used to extract the sub-
set of SGSC data for fair comparison on the same test set. The
data spanning the whole winter season of New South Wales
Australia is subdivided into a split ratio of 0.7/0.2/0.1 as:

(a) Training set (01-Jun-2013 to 05-Aug-2013)

(b) Validation set (06-Aug-2013 to 22-Aug-2013)

(c) Test set (23-Aug-2013 to 31-Aug-2013)

The first set is to train the DeepDeFF model, validation set
is used to select the best model weights based on performance
on validation set, while the test set is for the evaluation of the
DeepDeFF model. The data is spaced between 30 minutes
interval; so for 69 customers the 9 days of evaluation implies
the forecasting of 29,808 time points.

2) RESULTS

Table-1 shows the comparison of results from rigorous exper-
iments that are performed on SGSC dataset using the pro-
posed DeepDeFF method in contrast with the implementation
of the LSTM model proposed in [6], and its extended variants
that use GRU, RNN, and their bi-directional counterparts.
The addition of derived features in the proposed architecture
along with MAPE as loss function, outperforms the state
of the art on the SGSC dataset as evident from the average
MAPE computed in Table-1.

B. AMPds

1) TRAIN & TEST SETTING

The AMPds data is converted from 1 minute resolution to
30 minutes, yielding 17,483 data points [29]. The data is
subdivided with a split ratio of 0.7/0.2/0.1 into:

(a) Training set (01-Apr-2012 to 17-Dec-2012)
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TABLE 1. Results achieved on SGSC dataset.

Method Avg. MAPE %
2-timestamps | 6-timestamps | 12-timestamps

DeepDeff BGRU 34.87 36.02 36.48
DeepDeff BLSTM 35.40 36.41 37.74
DeepDeff BRNN 35.79 38.60 39.64
DeepDeff GRU 35.01 35.72 36.34
DeepDeff LSTM 36.88 37.28 38.09
DeepDeff RNN 35.94 38.97 40.57
BGRU 42.83 42.08 42.40
BLSTM 43.04 42.96 43.88
BRNN 42.74 42.61 43.20
GRU 42.85 41.78 41.54
LSTM [6] 44.39 44.31 44.06
RNN 42.04 42.28 43.29
CNN-LSTM [18] 40.38 41.07 42.85
KNN 74.83 71.19 81.13
ELM 122.90 136.49 123.45
BPNN 49.62 49.04 49.49

TABLE 2. Results achieved on AMP dataset.

Method Avg. MAPE %
2-timestamps | 6-timestamps | 12-timestamps

DeepDeff BGRU 25.08 24.64 25.19
DeepDeff BLSTM 25.44 25.98 26.62
DeepDeff BRNN 24.77 25.47 25.35
DeepDeff GRU 25.48 25.33 25.17
DeepDeff LSTM 25.57 26.00 25.81
DeepDeff RNN 25.62 25.32 25.87
BGRU 28.17 31.58 32.85
BLSTM 28.14 32.32 36.08
BRNN 26.88 30.10 31.62
GRU 27.65 30.49 30.00
LSTM 28.57 33.47 30.65
RNN 26.26 27.97 29.54
KNN 30.61 30.38 30.66
ELM 43.88 44.05 44.16
BPNN 34.01 37.83 38.71

(b) Validation set (18-Dec-2012 to 23-Feb-2013)
(c) Test set (24-Feb-2013 to 01-Apr-2013)

2) RESULTS
Table-2 shows a comparison of the results produced by the
simple two layer sequential model and the DeepDeFF archi-
tecture with derived features. The proposed architecture beats
the benchmark of 26.23% achieved in [29] for 6 time-steps.
Fig. 4 shows that the DeepDeFF architecture performs
well in predicting the general load and suffers in case of
outliers. This is because the model was able to learn the
underlying general pattern from the training data, and gave
it more importance than to outliers. This problem occurred
because the training data was not enough and does not cover
all the months; so the test data is of a month that was never
seen during training.

C. RTE DATASET

1) TRAIN & TEST SETTING

RTE data is subdivided into three subsets with a split ratio
of 0.7/0.2/0.1 as:
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FIGURE 4. Actual load versus load predicted by DeepDeFF architecture
utilizing different sequential layers for AMPds dataset.
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FIGURE 5. Training and testing data comparison, RTE dataset.

(a) Training set (01-Jan-2013 to 18-Nov-2015)
(b) Validation set (19-Nov-2015 to 07-Aug-2016)
(c) Test set (08-Aug-2016 to 31-Dec-2016)

Fig. 5 show the subsets of training and testing data for the
dates mentioned in the figures’ legends. Such close resem-
blance in the test and train data helps the model to make
accurate predictions as evident from the results.

2) RESULTS
It is observed from the results for SGSC and AMPds datasets

that the experiments with 2 time-steps mostly yield the best
results. Henceforth 2 time steps is used for the experiments
on other datasets. Table-3 shows the results for RTE dataset.
The proposed model with GRU and derived features per-
formed best with average MAPE of 0.81%. Fig. 6 shows
the prediction results against the actual system load which
further confirms the excellent performance of the DeepDeFF
architecture.

D. ERCOT DATASET

1) TRAIN & TEST SETTING
ERCOT data is subdivided into three subsets with a split ratio
of 0.5/0.1/0.4 as:

(a) Training set (01-Jan-2011 to 26-May-2013)

(b) Validation set (27-May-2013 to 31-Dec-2013)

(c) Test set (01-Jan-2014 to 31-Dec-2015)

Similar to RTE, ERCOT is also the accumulated load

consumption data of Texas. The train and test data for ERCOT
also has close resemblance similar to Fig. 5.
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TABLE 3. Results achieved on RTE, ERCOT and PRECON datasets.

Method Avg.MAPE % - 2 timestamp
RTE | ERCOT PRECON
DeepDeff BGRU | 0.84 0.91 21.87
DeepDeff BLSTM 1.63 0.98 22.00
DeepDeff BRNN 1.26 0.92 21.67
DeepDeff GRU 0.81 1.38 22.10
DeepDeff LSTM 1.17 1.17 22.18
DeepDeff RNN 1.39 1.38 21.89
BGRU 1.06 1.40 24.01
BLSTM 1.04 2.58 24.18
BRNN 1.13 1.37 23.90
GRU 1.09 1.76 24.04
LSTM 1.19 1.96 2431
RNN 1.14 2.88 24.11
KNN 1.17 6.11 40.43
ELM 1.21 1.85 44.51
BPNN 1.20 6.01 30.02
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FIGURE 6. Actual load versus load predicted by DeepDeFF architecture
utilizing different sequential layers on RTE dataset.
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FIGURE 7. Actual load versus load predicted by DeepDeFF architecture
utilizing different sequential layers on Ercot dataset.

2) RESULTS

Table 3 shows the results for ERCOT dataset where the
DeepDeFF model with BGRU performed best with average
MAPE of 0.91%. Figure-7 shows the results that establishes
the effectiveness of the DeepDeFF architecture.

E. PRECON

1) TRAIN & TEST SETTING

Owing to the peculiar nature of the PRECON dataset, it is
pre-processed in two steps in this research. First, the data
is converted from 1-minute interval to 30-minute intervals
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by taking the average over the 30 consecutive load read-
ings. The second step is to take care of close to zero values
in the data that are mostly due to power outages. Other-
wise these values cause divide-by-zero problem when using
MAPE function for evaluation, resulting into unrealistically
high MAPE and adversely affecting the performance of the
machine learning algorithm. This is countered simply by
adding a small offset of 0.1 KW to all the readings. The offset
is small enough to makes no significant change in the nominal
values of the load and takes effect only for the near zero data.
This simplest pre-processing has shown remarkable impact
on the performance of the DeepDeFF algorithm as evident
from the results.

The data splitting is done in a unique way here due to the
reason that it spanned over a period of only one year with no
repeated data for any month. So instead of using an overall
split of data, as done in previous datasets, a month-wise split
is proposed. Here the training, validation, and testing data
is taken from days 1 — 21, 22 — 26, 27 — 30/31 respectively
for each month. This corresponds roughly to an overall split
of 0.7/0.2/0.1.

2) RESULTS

Table 3 shows the comparison of results obtained for
PRECON dataset. DeepDeFF models have consistently out-
performed the basic models on all the houses, achieving on
average 8.9% lower MAPE than the basic models.

The value of the MAPE achieved by DeepDeFF models
ranged from 7.67% on House 3 to 37.61% on House 29. The
graphs of predicted versus actual load of these two houses are
shown in Fig. 8a and Fig. 8b respectively.

VI. DISCUSSIONS

It can be observed from the results reported in Section V
that the proposed methodology consistently outperforms
previously reported results. It also proves our hypothesis
that the fusion of hand-crafted features, both basic and
derived, indeed increases the efficacy of deep learning mod-
els. Previous works usually report results on a single dataset;
however, to the best of our knowledge, this is the first work
that compares a single deep learning architecture across five
(05) datasets from different countries under different energy
consumption patterns and across different time-ranges.

The results also show that some datasets are difficult than
others for SLF. This pertains to the fact that individual house-
holds (SGSC, APMds, and PRECON) have high variance in
load consumption in comparison to those for country or a
state (RTE and ERCOT). The effect of high variance in load
consumption makes it difficult for any forecasting method to
learn the underlying pattern. The effect of high variance can
be overcome by using more data over wide range, such as data
covering multiple seasons.

Despite better results across all five datasets than the pre-
vious state-of-the-art, the current methodology also fails in
some scenarios of individual household energy forecasting.
For SGSC, the best performing model is DeepDeFFF BGRU
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FIGURE 8. Actual load versus load predicted by DeepDeFF architecture utilizing different sequential layers on PRECON dataset.
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FIGURE 9. A comparison of train and test load data for two types of customers from SGSC dataset is shown, (a) shows a customer whose train
and test data patterns have high correlation, (b) shows a customer who has very different load patterns for train and test data.
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FIGURE 10. Actual load versus load predicted by DeepDeFF architecture utilizing different sequential layers for the two customers shown in Fig.9.

with an average MAPE of 34.87%. However, upon close
observation of failure cases, it can be witnessed that the pro-
posed method did not perform better because of the anoma-
lous customer behavior during test days, and because of the
lack of the training data available for that month and dates.
Fig. 9 provides some insight into the diversity of customers
of SGSC data by juxtaposing the train and test data. Test data
is plotted over training data with matching numeric dates.
Fig. 9a shows the data of a customer with similarity between
train and test data patterns, whereas Fig. 9b shows no simi-
larity for another customer. This indeed effects the results of
DeepDeFF architecture, which is reflected in their respective
MAPE of 26.04% and 50.78% using BLSTM layer; thus
the DeepDeFF model has been able to learn the underlying
patterns and temporal relations for Fig. 9a but not as good for
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Fig. 9b. Disjoint customer behaviour during training and test-
ing days along with the lack of training data for corresponding
month and date also resulted in poor performance in some
cases. Fig. 10a confirms that the DeepDeFF model indeed
predicts the actual load very well for customer 8804804.
However, Fig. 10b shows that the model under performs for
customer 8655993 due to uncorrelated train and test data.
These problems can be solved by including more data into
training, such that the training set covers the entire year.
More features such as temperature, humidity, climate, season,
etc., can also help in better generalization and improve the
performance of the model.

For AMPds dataset, DeepDeFF BGRU provides the best
forecast with 24.64 MAPE value when taking 6 previous
timestamps into consideration. However, it was observed that
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random availability of certain high wattage load makes the
data spike randomly, thereby, resulting in more errors.

For RTE dataset, DeepDeFF GRU model (uni-directional)
provided the best results with a MAPE of 0.81 and for ERCOT
datatset, DeepDeFF BGRU outperform other methods with
a MAPE of 0.91. Both of these dataset are highly smooth
having low variance; therefore, sequential models have per-
formed very well.

The PRECON is a special dataset because it provides an
additional challenge of data with 0 KW entries due to exces-
sive and sporadic power outages during network overloads,
resulting into divbyzero problem during MAPE calculation.
It is shown that such datasets can be dealt with a simple offset
to avoid the divbyzero scenario. This simple modification
helped in successful application of sequential model. The
DeepDeFF BRNN model came out as winner with a MAPE
of 21.67. The sudden random spikes in the load consumption
resulted in outliers, as in the case of Fig. 8b, resulting in
high MAPE for such houses as compared to rest of the
houses.

Observing the results more closely, one can see that all
sequential models enriched with hand-crafted features per-
form better than the simple application of sequential mod-
els. It has been successfully demonstrated that the fusion of
hand-crafted derived features augmented with MAPE as a
loss function can be utilized in short-term load forecasting
across many type of datasets.

This work can be extended in multiple directions. One can
consider hype-parameters optimization for each dataset in
conjunction with other features such as temperature, humid-
ity, climate, season, holidays etc., and related derived fea-
tures to extend a more powerful DeepDeFF model especially
for cases where random peaks are experienced in the data
(Fig. 4 and Fig. 8b). Also, the issue of data limitation can be
addressed further by data augmentation in time-series domain
and transfer learning.

VIi. CONCLUSION

Load forecasting is of critical importance to optimally
schedule and reliably manage the operations of power sys-
tems. This manuscript presented a deep learning architecture
based on sequential layers, and a pre-processing method
for introducing hand-crafted features into the end-to-end
learning pipeline of the deep learning model, for short-term
load forecasting. It is demonstrated with rigorous experi-
mentation that the inclusion of hand-crafted features has
improved the learning and predictions of the model. The
proposed DeepDeFF architecture has been comprehensively
tested on five different datasets — two country/state wide
datasets and three household datasets. The results achieved
from the proposed methodology have shown to outper-
form the current benchmark of these datasets for short
term load forecasting. These results can be verified from
the data and the code pertaining to this paper, download-
able via: https://github.com/manastahir/Short-Term-Load-
Forecasting.
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