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It is interesting to develop effective fish sampling techniques using underwater videos and image processing to automatically estimate and
consequently monitor the fish biomass and assemblage in water bodies. Such approaches should be robust against substantial variations in
scenes due to poor luminosity, orientation of fish, seabed structures, movement of aquatic plants in the background and image diversity in
the shape and texture among fish of different species. Keeping this challenge in mind, we propose a unified approach to detect freely moving
fish in unconstrained underwater environments using a Region-Based Convolutional Neural Network, a state-of-the-art machine learning
technique used to solve generic object detection and localization problems. To train the neural network, we employ a novel approach to uti-
lize motion information of fish in videos via background subtraction and optical flow, and subsequently combine the outcomes with the raw
image to generate fish-dependent candidate regions. We use two benchmark datasets extracted from a large Fish4Knowledge underwater
video repository, Complex Scenes dataset and the LifeCLEF 2015 fish dataset to validate the effectiveness of our hybrid approach. We achieve
a detection accuracy (F-Score) of 87.44% and 80.02% respectively on these datasets, which advocate the utilization of our approach for fish
detection task.
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Introduction
Monitoring the effect of preventive and recovery measures

requires the estimation of fish biomass, and abundances by sam-

pling their populations in water bodies like lakes, rivers and

oceans on a regular basis (Jennings and Kaiser, 1998). This

requires observation of the interaction of different fish species

with changing environmental conditions. This is an essential pro-

cess, especially in those regions of the world where certain species

of fish are either threatened or at the risk of extinction due to

habitat loss and modification, industrial pollution, deforestation,

climate change, and commercial overfishing (Tanzer et al., 2015).

There is a well-established and increasing interest in using non-

destructive fish sampling techniques by marine biologists and

conservationists (McLaren et al., 2015). Underwater video-based

fish detection approaches have been used to achieve non-

destructive and repeated sampling for many years (Harvey and
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Shortis, 1995; Shortis et al., 2009). Manual processing of under-

water videos is labour intensive, time consuming, expensive and

prone to fatigue errors. In contrast, automatic processing of the

underwater videos for fish species classification and biomass mea-

surement is an attractive alternative. However, high variability in

underwater environments due to changes in lighting conditions,

clarity of water, and background confusion due to vibrant seabed

structure pose great challenges towards automatic detection of

fish. These factors result in a compromise on accuracy, which

supports the continuing practice of less cost effective and cum-

bersome manual sampling and tagging of fish.

In general, automatic fish sampling involves the following

three major tasks: (i) Fish detection, which discriminates fish

from non-fish objects in underwater videos. Non-fish objects in-

clude coral reefs, aquatic plants, sea grass beds, sessile inverte-

brates such as sponges, gorgonians, ascidians, and general

background. (ii) Fish species classification, which identifies the

species of each detected fish from the predetermined pool of dif-

ferent species (Siddiqui et al., 2017). (iii) Fish biomass measure-

ment, using length to biomass regression methods (Froese, 2006).

This article addresses the first task and the interested reader is re-

ferred to the literature for details of the following two steps in the

overall process.

Various approaches have been followed for fish detection and

consequently their assemblage estimation using image and video

processing algorithms. Broadly speaking, these approaches can be

divided into two categories based on the medium available for

sampling, namely constrained and unconstrained sampling. In

the former case, early attempts were made that involved detection

of fish using information of their shape and colour (Strachan and

Kell, 1995) or 3D modelling of fish to acquire features like height,

width, or thickness (Storbeck and Daan, 2001). Harvey and

Shortis (1995) presented an approach to acquire underwater

images of fish under controlled conditions. This was achieved by

making fish swim through a chamber with controlled illumina-

tion. Unconstrained underwater fish detection and classification

does not assume any specific environmental conditions and,

therefore, faces difficulty in achieving the required accuracy due

to high variations in the aforementioned conditions. To address

this problem, Spampinato et al. (2008) presented an image proc-

essing based method for fish detection and counting by capturing

the texture pattern of fish in the natural underwater environment.

They were able to achieve an average accuracy of about 84% on

five underwater videos. In the past, several attempts have been

made to solve the same problem in underwater videos using ma-

chine learning. Principal component analysis (Turk and

Pentland, 1991), linear discriminant analysis (Mika et al., 1999),

and sparse representation-based detection (Hsiao et al., 2014)

presented some ways to capture fish-dependent features through

mathematical modelling, which assumed independence of mod-

elled fish with surrounding environments in videos. In other

words, information like fish colour, texture, and shape was

extracted with the prior assumption that foreground fish instance

was easily distinguishable from the background. In reality, it is

challenging to differentiate fish within underwater video/images

due to camouflage with the background, poor visibility, and loss

of contrast as a result of light attenuation through the water me-

dium, low light, and water turbidity. In pursuit of suppressing

the effects of environmental variability, Kernel Descriptors in

Kernel density estimation (KDE) approach with colour informa-

tion for background pixel modelling in images were used by

Sheikh and Shah (2005). In contrast, texture-dependent features

computed via local binary patterns for background modelling

was proposed in Yao and Odobez (2007).

Background modelling is a popular technique to segment

moving foreground objects from the background in video

sequences. An approach using motion-based fish detection in vid-

eos was presented by Hsiao et al. (2014). This method imple-

ments background subtraction by modelling background pixels

in the video frames using Gaussian mixture models (GMMs).

Although training the GMM, it is assumed that subsequent

frames of video lack fish instances. Motion is detected in the

video frames (apparently from fish) when a certain region of the

frame does not fit into the trained background model. This ap-

proach produces fish detection results with an average success

rate of 83.99% on several underwater videos collected near south-

ern Taiwan. A similar scheme was proposed on covariance

modelling of background and foreground (fish instances) in the

video frames using colour and texture features of fish (Palazzo

and Murabito, 2014). Using a dataset of four underwater videos

with a high variation in luminosity, strong background move-

ments, dynamic textures, and rich background, they were able to

achieve an average detection accuracy of 78.01%. Presently,

GMM- and KDE-based fish detection approaches are considered

state-of-the-art (Spampinato et al., 2014). We will compare the

performance of various state-of-the-art techniques with our pro-

posed approach in a later section.

All of the above-mentioned machine learning and feature ex-

traction approaches fall into the category of shallow learning

architectures (Bengio, 2009). These techniques are unable to ac-

curately model the complexity of fish-dependent features in the

presence of highly variable and diverse environments, and there-

fore these video or image-based fish detection techniques ex-

hibit low performance in real-world scenarios (Siddiqui et al.,

2017). In the last decade, deep learning has been at the centre of

attention for many researchers developing detection and classifi-

cation algorithms in computer vision. Marked by their ability to

extract and model highly nonlinear data, deep architectures

have been utilized in numerous tasks related to computer vi-

sion, including facial recognition, speech processing, generic ob-

ject detection, and classification in video and still images

producing state-of-the-art results (Lin et al., 2015; Ren et al.,

2017). In realizing deep architectures, multilayer deep neural

networks are among the most successful schemes capable of

extracting task-dependent features in the presence of variability

in the images. Most commonly used variants of deep neural net-

works include deep convolutional neural networks (CNNs)

which are parametric neural network models capable of extract-

ing task-specific features and are widely used in computer vision

problems like object recognition in images and facial recogni-

tion (LeCun et al., 2015).

Deep learning is being used lately to solve fish-related tasks

(Moniruzzaman et al., 2017). An important work using CNN was

proposed by Sung et al., (2017) to detect fish in underwater imag-

ery with 65.2% average accuracy on a dataset containing 93

images having fish instances. The system was trained on raw fish

images to capture colour and texture information for localizing

and detecting fish instances in the images. In a similar work, deep

region-based CNN (R-CNN) were used for the abundance esti-

mation of fish from 4909 underwater images recorded in the

coast of Southeast Queensland, Australia. In this work, an accu-

racy of 82.4% was reported using the R-CNN system tuned for
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locating and detecting fish instances in an image with a unified

network framework.

Despite the high accuracy achieved by the deep learning based

fish species classification, the task of vision-based automatic fish

detection in unconstrained underwater videos is still under exten-

sive investigation as most of the previous attempts reported

results on relatively small datasets with a limited variety in the

surrounding environment. Therefore, it is important to judge the

robustness and effectiveness of any system in a large dataset with

a high degree of environmental variation.

In this article, we address fish detection in highly diverse and

unconstrained underwater environments and propose a hybrid

system based on explicit motion-based feature extraction fol-

lowed by a final detection phase using deep CNNs. In the first

step, we use background subtraction by modelling still pixels of

the video frames using GMMs. These models represent pixels re-

lated to a range of coral reefs, seabed features, and aquatic plants.

Foreground objects are segmented from the background based on

the motion in the scene that does not match the background

model. To enhance the quality of the extracted features in each

video frame, we concatenate the GMM candidate output blobs

with the moving candidates generated by optical flow, a well-

established approach used for motion detection in videos (Brox

et al., 2004). However, due to poor image quality, noise and back-

ground confusion, the detection remains far from perfect. To ad-

dress this problem, we tune the parameters of GMM and optical

flow systems to generate high recall by trying various values of

the number of Gaussian distributions, initial variance, blob size

and sensitivity in case of GMM, as well as pyramid size, number

of pyramid layers, and window size in case of optical flow. The

details of these parameters are given in Zivkovic and Heijden

(2006) for GMM and in Beauchemin and Barron (1995) for opti-

cal flow. Specifically, in this step, all entities that exhibit even a

slight movement are detected as fish. In the second step, we dis-

criminate all the candidate regions in the video frames as fish and

non-fish entities using a CNN architecture arranged in a hierar-

chical fashion to fine tune the detection system. Our CNN is

trained using a supervised training style in which the GMM and

optical flow blobs acts as the input while ground truth blobs

(given in the training data) acts as the desired output. We worked

on two different datasets; the Fish4Knowledge Complex Scenes

Dataset, where the aim is fish detection with videos arranged into

seven different categories based on the variation in the underwa-

ter environment; and the LifeCLEF 2015 (LCF-15) dataset, which

is also designed for the detection of freely swimming fish in video

sequences. These datasets contain marine scenes and species; un-

fortunately, there is no public domain benchmark datasets avail-

able containing underwater recordings in fresh water bodies.

The contribution of this work is to overcome the main chal-

lenge faced by the conventional motion detection and image clas-

sification approaches using deep learning. These deep learning

modules are trained to select the relevant information from the

data and minimize confusion which contributes to false alarms or

missed detections. This approach improves the detection and

classification accuracies especially in the data marked by high en-

vironmental variability like unconstrained underwater videos of

fish. Our novelty lies in the proposed hybrid setup to mine the

relevant motion information content by pooling the information

generated by GMM and optical flow and refining the outcome by

deep CNNs. Our approach is capable of detecting fish in the

video in its stationary or moving state with region-based feature

localization. This equips our detection system with motion-

influenced temporal information that is not available otherwise,

in order to enhance detection performance in cases where fish is

occluded or camouflaged in the background.

Material and methods
Dataset
We use two benchmark datasets in our study, both of which are

specially designed to provide a resource for testing algorithms for

detection and classification of fish in images and video sequences

and have been used for benchmarking a number of approaches.

The first dataset is used for the fish detection task and is a collec-

tion of 17 videos under different environmental conditions

(http://f4k.dieei.unict.it/datasets/bkg_modeling/). The second

dataset is taken from the LCF-15 fish task (http://www.imageclef.

org/lifeclef/2015/fish). This dataset contains 93 underwater videos

comprising 15 different fish species. Both datasets are derived

from a very large fish database called Fish4Knowledge (Fisher

et al., 2016). With over 700 000 underwater videos in uncon-

strained conditions, the Fish4Knowledge dataset has been col-

lected over a period of 5 years to monitor the marine ecosystem

of coral reefs around Taiwan. This region is home to one of the

largest fish biodiversity environments in the world with more

than 3000 fish species.

The first dataset, dubbed FCS (Fish4Knowledge with Complex

Scenes) hereinafter, comprises seven sets of selected videos

recorded in typical underwater conditions addressing complex

variability in the scenes. Thereby, the environmental variations

provide a major challenge for fish identification and are catego-

rized as follows:

(1) Blurred, comprising three low contrast, blurred videos.

(2) Complex background, composed of three videos with rich

seabed structures that provide a high degree of background

confusion.

(3) Crowded, in which three videos with a high density of mov-

ing fish in each video frame imposes specific challenges for

fish detection techniques, especially when it comes to high

recall and precision in the presence of occluding objects.

(4) Dynamic background, in which two videos are provided

with rich textures of coral reef background and moving

plants.

(5) Luminosity variation composed of two videos involving

sudden luminosity changes due to surface wave action. This

phenomenon can induce false positives in detection due to

moving light beams.

(6) Camouflage foreground, two videos are chosen, addressing

the challenge of detecting fish camouflaged in the presence

of textured and colourful background.

(7) Hybrid, in which two videos are selected to show a combina-

tion of all the above-mentioned conditions of variability.

Table 1 summarizes the technical information regarding both

datasets used in this article. For the FCS dataset, complexity is

specifically depicted for all seven environmental conditions. The

LCF-15 dataset is used to detect fish instances in the video i.e. to

count all the fish in the video regardless of their species. Of the 93

videos given in LCF-15, 20 are used for training the computer
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vision or machine learning modules, while the remaining 73 vid-

eos are set aside for testing/validating the developed algorithms.

In total, there are 9000 annotated fish instances available in the

LCF-15 training set, and 13 493 annotated instances for the test

videos. All these videos are manually annotated by experts. Apart

from videos, there are 20 000 labelled still images in LCF-15,

where each image comprises of a single fish. These images can

also be used to supplement the training set if required. Thus, in

total there are 42 493 labelled fish instances in videos and still

images in the LCF-15 dataset. The FCS dataset is also designed

and used for the fish detection task. Therefore, ground truth is

available for all moving fish, frame by frame in each video. There

are a total of 1328 fish annotations available for the FCS dataset.

Figure 1 shows some video frames extracted from FCS and LCF-

15 datasets exhibiting the variation in the surrounding environ-

ment, fish patterns, shape, size, and image quality.

Proposed algorithm
To perform fish detection, we propose a hybrid system based on

the initial motion-based feature extraction from videos using

GMM and optical flow candidates. These feature images are

combined with raw greyscale images and fed to the CNN system

to mark final detected fish. Therefore, our proposed hybrid fish

detection system is made up of three components i.e. GMM, opti-

cal flow and a CNN.

Gaussian mixture modelling
In machine learning, GMM is an unsupervised generative model-

ling technique to learn first and second order statistical estimates

of input data features (Stauffer and Grimson, 1999; Zivkovic and

Heijden, 2006). This approach and its variants are frequently

used in computer vision and speech processing tasks. GMM rep-

resents a probability density function P xtð Þ at time t of data x as

a weighted sum of multiple individual normal distributions g xið Þ
for pixel i. Thereby, each density is characterized by the mean

and covariance of the represented data. Using a combination of

individual Gaussian densities, any probability distribution can be

estimated with arbitrary precision (Reynolds and Rose, 1995).

In our case, each pixel value with a fixed location in the video

frame acts as a feature. Multiple such values from successive

frames are combined to form a feature vector. As elaborated in

Figure 2, we end up with a total number of feature vectors that

Table 1. Information about LCF-15 and FCS fish datasets.

Dataset No. of videos Format Resolution Frames/sec No. of labelled fish instances

LCF-15 93 FLV 640 � 480, 320 � 240 24 42 493
FCS 17 FLV 640 � 480, 320 � 240 24.5 1 328

Figure 1. Sample images to illustrate the high variation in underwater environment. The first two rows depict seven categories of the FCS
dataset from left to right top to bottom being Blurred, Complex background, Dynamic background, Crowded, Luminosity variation, Camouflage
foreground, and Hybrid. The last row shows an excerpt from different videos of the LCF-15 dataset.
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equals the total number of pixels in a video frame. The GMM

requires a certain amount of training data to effectively estimate

the mean and covariance of an object class. For fish detection in

videos, there are two classes i.e. background and foreground.

Ideally, the background in underwater videos should cover every-

thing in the frame but moving fish. For example, seabed struc-

ture, coral reef, aquatic plants, and wave action causing variation

in light intensity are categorized as background. Freely moving

fish, on the other hand, constitute as foreground. The GMM is

used to learn the background features in a statistical model using

mean and covariance values of pixel data and separate them from

the foreground pixel distribution. In other words, any random

and sudden change in the pixel value of a frame causes a mis-

match with the background model of that pixel and hence, a mo-

tion is assumed to be detected. The statistical pattern of

foreground (fish in our case) movement is usually different from

the pattern of fixed objects like seabed structures, coral reefs and

also objects with confined movement like to and fro motion of

plants and refracted light rays from the surface. The outputs of

the GMM are the candidate blobs marked by bounding boxes lo-

calizing the moving objects in a frame (see Figure 2).

The video frames that are used to train the GMM should not

include any fish instance but only the background. However, it is

very difficult to capture such videos in a natural environment as

fish can appear in any number of frames. When a GMM is trained

on videos that do not have pure background but also some fish,

the fish will also be modelled as background resulting in misde-

tections in the upcoming test frames.

Optical flow
To compensate for this shortcoming of GMM, we additionally

extracted optical flow features which are purely generated by mo-

tion occurring in the underwater videos (see Figure 2). Optical

flow is a 2D motion vector in the video footage caused by the 3D

motion of the displayed objects (Warren and Strelow, 1985).

There are various methods to estimate optical flow. We opted for

a simple yet effective method where motion is detected between

two successive video images taken at times t and t þ Dt at every

position using Taylor series approximation with partial deriva-

tives with respect to spatial and temporal coordinates

(Beauchemin and Barron, 1995). A region of interest (ROI) in a

video frame at time t and coordinates x; y can be represented in

terms of intensity as I x; y; tð Þ. After any motion in the next

frame, the intensity becomes I x þ Dx; y þ Dy; t þ Dtð Þ where the

notation D represents the change in coordinates and time. Based

Figure 2. (A) Illustration of background subtraction and foreground segmentation using GMM which detects any change in the foreground
by matching it with the background model. (B) Motion detection in an optical flow setup to estimate the direction of moving objects in two
dimensions (x, y) for consecutive frames in time t of a video sequence.
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on the motion constraint, optical flow can be determined as de-

scribed in, for example, Beauchemin and Barron (1995).

Optical flow depends on the analysis of the consecutive frames

to estimate the difference in the intensity vector of a pixel at a

particular location. However, such an analysis is also prone to

false motion detection apart from fish when applied to a dynamic

background with moving aquatic plants and abrupt luminosity

variation due to disturbance at the water surface. The parameters

of the GMM and optical flow algorithm are chosen such that

even the smallest movements are detected. In other words, the

sensitivity of the algorithms is maximized, producing a high rate

of false alarm in addition to detecting fish instances leading to

high recall rates. In the next step, the precision of the system is

further increased by fine-tuning and refining regions in the

frames to localize moving fish. This requires a robust detector to

categorize fish motion in complex and variable environments.

We propose the use of a R-CNNs (hereinafter referred to as R-

CNN) trained on images, created by combining candidate regions

generated by the GMM and optical flow together with the origi-

nal greyscale images in a supervised learning setup.

Region-based convolutional neural network
A deep CNN is a nonlinear parametric neural network model ca-

pable of extracting and learning complex yet abstract features of

the input data. Variations in the lighting condition, size, shape,

and orientation of the fish, poor image quality and significant

noise are the factors that introduce nonlinearity into the data

(Bengio, 2009). Since all of these challenges are encountered in

the videos recorded in an unconstrained underwater scenario, it

is difficult for conventional machine learning algorithms to

model data features in the presence of such nonlinearity.

However deep neural architectures, especially CNNs, learn to ex-

tract invariant and unique features of the objects of interest in

data when properly trained with a sufficient amount of labelled

data (LeCun et al., 2004; Simonyan and Zisserman, 2014). The

deep architecture exemplified by the R-CNN employed in our

study is a hierarchical parametric model composed of two mod-

ules. The first module is a generic deep CNN trained for generic

object recognition on a very large dataset called ImageNet (Deng

et al., 2009). Smaller than the first module CNN, the second

module is another CNN, which acts as the object detector and

called region proposal network (RPN) (Ren et al., 2017). It selects

candidate regions in the feature space of the input image in which

a motion is likely to have occurred.

The entire system is used for detecting moving objects as

depicted in Figure 3. The first module utilizes the concept of

transfer learning (Siddiqui et al., 2017). It learns characteristic

feature representation of the object of interest in the input image

in order to recognize and classify the objects in the imagery. In

transfer learning, a CNN pretrained on totally different, yet rele-

vant dataset, is utilized as a generic feature extractor for the data-

set of interest. In our case, the CNN was trained on the vast

ImageNet dataset that contains 1.2 million images of a very large

and diverse number of objects. This dataset is not related or

designed for fish species recognition or fish detection in underwa-

ter videos. However, it provides a high degree of variability to de-

tect generic objects with different backgrounds in input images

based on their texture, size and shape features. Once the network

is trained, it can be applied to a different dataset, in our case on

underwater video imagery of fish, as a feature extractor. Transfer

learning is suitable for the applications where a large amount of

training data is not available to train the deep CNNs (Siddiqui

et al., 2017). This is exactly the problem in the current underwa-

ter datasets. Training on such relatively small datasets (see

Table 1) overfits a deep CNN to generate better performance on

training dataset and fails on previously unseen test datasets. In

other words, the training dataset is so small that the CNN is able

to memorize it and produce good results only on the training

dataset. We utilize a deep CNN known as ResNet-152 as the pre-

trained model (He et al., 2016). The parameters of this network

are further refined by including examples of our fish dataset video

imagery in training. This network is composed of an input layer,

various hidden layers and an output layer to process an input im-

age to obtain its output feature representation (LeCun et al.,

2004). Starting from an input layer that represents the pixels of

an image, the hidden layers are interconnected by a set of weights

that are tuneable as a result of the training procedure. Thereby,

each hidden layer represents a higher-level form of feature repre-

sentation. There are several types of hidden layers used in our

network, e.g. a convolution layer that performs the mathematical

operation of convolution between image pixels (values of the

Figure 3. The proposed hybrid system, where ResNet-152 CNN is trained on images that are created by combining the motion-influenced
outputs of GMM and optical flow algorithms with raw greyscale video images. This is analogous to three-channel RGB image.
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input layer) or feature values (values of the hidden layers) with

the weight vectors. Convolution is generally used in image proc-

essing for noise reduction or detecting features such as edges or

other patterns (LeCun et al., 1989). In a CNN, convolution is fol-

lowed by a nonlinear activation layer to induce nonlinearity in

the feature vectors. There are several types of nonlinear functions,

e.g. ReLUs (rectified linear units), Sigmoid and Hyperbolic

Tangent (LeCun et al., 2004; Simonyan and Zisserman, 2014; He

et al., 2016). The choice of the nonlinear function depends on the

data distribution and nonlinearity of the input data. Due to the

saturating regions of the Tangent Hyperbolic and Sigmoid func-

tion, the ReLU function is the defacto-standard in the latest state-

of-the-art models. Max pooling and average pooling layers sift

out the most prominent values from the output of nonlinearity

inducing layers based on maxima or an averaging operations to

reduce the dimension of feature vectors and retain useful infor-

mation while discarding the redundancy. The final layer is the

output layer which usually is a classification layer with output

nodes equal to the number of desired classes for a given dataset.

Each output node produces a score or probability for the associ-

ated class. The predicted label is then matched with the ground

truth label to calculate accuracy.

ResNet-152 is a modular deep CNN with various hidden

layers. The architecture is designed to process images of size 224

� 224 given the fact that this resolution is enough to extract use-

ful features within reasonable computational time. Thus, after ap-

plying five pooling layers, the feature map size shrinks to 7 � 7

which can be processed by fully-connected layer of 1000 label pre-

diction nodes, since ResNet-152 was designed to train on a subset

of ImageNet dataset with 1000 classes.

The complete architecture details of ResNet-152 can be found

in He et al. (2016). The arrangement of the above-mentioned

layers in this architecture is experimentally determined to yield

greater success on visual features from the large-scale ImageNet

dataset. Using this network as a pretrained model on our FCS

and LCF15 fish datasets, an informative visual representation of

fish objects and their motion can be extracted. After applying the

pretrained ResNet-152 network on the input which is a concate-

nation of the raw greyscale video frames and the motion candi-

dates generated by GMM and optical flow, we get the output

features. This three-input combination is alternative to the stan-

dard three-channel RGB image. The output features extracted by

applying ResNet-152 are fed into RPN to generate candidate

regions where fish might be present. This is achieved by sliding a

small window of size 3 � 33� 3 on each of the feature maps

to produce k proposals, called anchor boxes, of different aspect

ratio and scale. We use three different scales ð128�
128; 256� 256; 512� 512Þ each with 3 different aspect rations

(2:1, 1:1, and 1:2) to make k ¼ 9 proposals. The aim of using dif-

ferent proposals is to capture fish of different sizes that may ap-

pear in an image. These proposals are then classified with a

binary classification layer of the RPN to detect the ROI. Another

sibling layer of RPN outputs coordinate encodings for each classi-

fied proposal. This operation is depicted in Figure 4. The ROIs

proposed by the RPN are pooled using an ROI pooling layer and

passed onto the final classification head which refines and classi-

fies the proposed ROI into the actual number of classes present at

hand, namely fish and non-fish. The complete network is trained

in an end-to-end fashion using the features generated by ResNet-

152 model as the input and the corresponding ground truths pro-

vided by the dataset. While training, we employ an error backpro-

pagation algorithm (Hinton et al., 2006).

As mentioned earlier, the parameters of the GMM-based mo-

tion detection algorithm are chosen such that it detects even a

very small motion by either fish or non-fish objects producing

high false alarm or recall rates. The R-CNN architecture, which is

a combination of the ResNet-152 based feature extraction and

RPN followed by a final classification layer for localizing moving

objects, refines the output of the GMM and optical flow motion

candidates. Therefore, the information of motion coming from

GMM and optical flow is fed into R-CNN to finally detect and lo-

calize objects. Apart from motion candidates generated by GMM

and optical flow, the use of greyscale raw images in combination

with motion candidates as input to the ResNet-152 CNN helps in

Figure 4. Illustration of the functionality of a RPN to detect and localize fish. The proposal with the best fit to the fish instance is selected
out of k choices.
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preserving the textural information of fish appearing in the video

frame, which increases the capability of the network to induce

separability between fish and non-fish objects. The reason of us-

ing greyscale image instead of RGB to fine-tune the R-CNN is the

observation that colour information in the employed datasets are

not distinct enough to enhance the accuracy of detection as the

background is also vibrant in colours. Moreover, doing so

increases the computational overhead.

In this work, we utilized computer systems equipped with Intel

Core-i7 processors and Nvidia Titan X graphical processing units

(GPUs). The proposed system is trained and tested using

TensorFlow deep learning library (https://www.tensorflow.org)

with Tf-faster-rcnn version while GMM and optical flow source

codes were taken from publicly available authors’ repositories

(https://github.com/andrewssobral/bgslibrary).

Fish detection system utility
Our software system is available for deployment and ready to be

used by marine scientists for automatic fish detection in any data-

set. As described in Region-based convolutional neural network

Section, the deep network, which is the backbone of our algo-

rithm, is pretrained on a large and generic object image reposi-

tory called ImageNet and acts as a generic feature extractor.

However, for using a pretrained network in such a transfer learn-

ing approach, the system must be fine-tuned to the actual datasets

in hand; therefore, a complete end-to-end re-training on a new

dataset is not required. In our case, we utilized FCS and LCF-15

datasets by updating the weights of the top fully connected layers

of ResNet-152 of R-CNN, while keeping the lower layers intact.

Furthermore, the GMM and optical flow algorithms can be used

as is since they only require the available dataset to generate out-

put. The source code for our proposed hybrid system is available

for download from the following repository: https://github.com/

ahsan856jalal/Fish-Abundance. Scientists can use this code off-

the-shelf for fish/object detection in any dataset, video recordings

or even still imagery.

Results
The underwater video background is modelled by GMM using

training data from the initial few frames of the video while the re-

mainder of the video is treated as the test dataset. Since each

video in our datasets has a different background, we need to keep

the first N frames of each video for background modelling. We

take N ¼ 50 in our experiments as this value was chosen on a

trial basis to get optimum GMM performance on our datasets.

Smaller values of N produces an inferior performance, while in-

creasing beyond this value does not bring any improvement and

increases GMM training time. Optical flow does not require any

training data but simply uses adjacent frames to calculate a mo-

tion representation. The R-CNN, on the other hand, requires

more data to tune the weight parameters for refined motion de-

tection. The raw video images and the motion candidates gener-

ated by the GMM and optical flow are fed to the R-CNN for

training. One video from each of the seven categories of FCS

dataset is set aside for training the GMM and R-CNN. On top of

that, GMM also requires the first 50 frames of each video to make

a background model and to generate a blob of moving objects in

the test frames. The LCF-15 dataset, on the other hand, is already

segmented into training and test sets, 20 videos out of a total of

93 are used in training and the remainder is used for testing.

Once again, GMM models for all 93 videos are created using the

N initial frames. Table 2 lists the performance measure for the

fish detection task as an F-measure (Palazzo and Murabito, 2014)

for our proposed hybrid system and its independent constituents

of GMM, optical flow and standalone R-CNN, which are trained

on raw RGB images from videos.

The F-score is calculated as,

F ¼ 2� Recall� Precision

Recallþ Precision

where

Precision ¼ True Positives

True Positivesþ False Positives

and

Recall ¼ True Positives

True Positivesþ False Negatives

These scores are computed based on overlap between the areas

of bounding boxes related to ground truths and detected fish. An

average detection accuracy of 87.44% was achieved by the pro-

posed hybrid system for the FCS dataset for all seven categories of

environmental variation. In comparison, the GMM alone yielded

an average accuracy of 71.01% exceeding the optical flow and

standalone R-CNN with significant margins. We also performed

similar experimentation on LCF-15 test dataset of 73 underwater

videos. There, our proposed hybrid system outperforms all the

other systems, yielding an accuracy of 80.02% as compared with

76.21, 52.73, and 77.30% by the GMM, optical flow and stand-

alone R-CNN, respectively.

The parameters of the GMM were carefully chosen to produce

best possible results by altering the variance for model fitting and

the number of frames for training the model on each video.

A fewer number of training frames per video results in degraded

performance. However, increasing the number of training frames

beyond 50 did not improve the overall performance significantly.

Similarly, for our proposed hybrid system and also for the stand-

alone R-CNN trained on the raw RGB images, various state-of-

the-art pretrained CNNs were tried that include Inception-V4

Table 2. Performance analysis of individual components of our
proposed hybrid framework in comparison to their joint accuracy.

Dataset GMM
Optical
flow R-CNN

Our hybrid
system

FCS
Blurred 77.80 45.94 85.62 86.76
Complex background 75.94 49.77 52.74 89.54
Crowded 74.41 67.48 53.23 84.27
Dynamic background 64.30 44.62 62.06 90.36
Luminosity change 59.07 58.67 70.17 81.44
Camouflage foreground object 70.03 67.00 66.25 89.97
Hybrid videos 75.50 59.44 64.90 91.50

Average 71.01 56.13 64.99 87.44
LCF-15 76.21 52.73 77.30 80.02

F-scores (in percentage) for three different methods i.e. GMM (Stauffer and
Grimson, 1999), Optical flow (Warren and Strelow, 1985), and R-CNN (Ren
et al., 2017) on FCS and datasets for seven categories of video complexity.
Highest scores are highlighted in bold
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(Szegedy et al., 2016) and DenseNet (Huang et al., 2017). All of

these networks are pretrained on the ImageNet dataset with the

same experimental settings. Moreover, different numbers of con-

volution layers for the RPN network were also evaluated and the

choice of sliding window size of 2 � 22� 2, 4� 4, and 5 � 5 was

tested, with the performance maximized at 3 � 33� 3. The per-

formance started to deteriorate slightly beyond the 3 � 33� 3

window size probably due to more overlap between intrinsic size

of fish covering the frame of videos in our datasets. The results

generated by Inception-V4 and ResNet-152 were comparable

without any significant difference but the latter utilizes less proc-

essing power in training and testing compared with the former.

Our implementation of optical flow on the other hand is a non-

trainable processing approach for motion detection and

therefore, does not have any trainable parameters. It is worth

mentioning here that the GMM chosen for our proposed hybrid

system differs with the one listed in Table 2 as its parameters were

tuned to produce higher recall rates at the cost of decreased preci-

sion to cover maximum possible pixel motion in the video by

both fish and non-fish objects. The CNN and RPN subsystems

then learn to select the relevant motion candidate through refin-

ing the results generated by the GMM and optical flow. Figure 5

shows the performance outcome on a sample video for GMM,

optical flow, R-CNN, and the proposed hybrid system for both

the FCS and the LCF-15 datasets. It is evident that the optical

flow algorithm generates more false alarms and is sensitive to

even very slight motion, which can be attributed to disturbances

in the scene or luminosity changes. On the other hand, the GMM

and stand-alone R-CNN, which is only trained on raw RGB

images, also exhibits false alarms and/or missed detection.

However, they both yield better scores as compared with the opti-

cal flow due to effective background modelling and end-to-end

supervised training; capabilities which optical flow lacks and are

necessary to reduce the irrelevant motion created by non-fish en-

tities. Our proposed hybrid system, on the other hand is success-

ful in achieving the best performance (see Table 2).

To validate the effectiveness of our system, in Table 3 we have

drawn a comparison with various published benchmark

approaches which are frequently used for motion-based object

detection in either still or video imagery. The comparison is

made on the FCS dataset for which we can directly tabulate pub-

lished scores by these techniques with the same experimental set-

tings as ours. It is evident that our proposed hybrid system

outperforms all others in most environmental conditions and the

overall average F-scores. In another set of experimentation not

reported here, we changed the train-test split in the FCS and

LCF-15 datasets to calculate the detection scores but observed no

significant change. This demonstrates a good generalization capa-

bility of our system.

Discussion
In this study, we have proposed a R-CNN to detect fish using en-

hanced features sensitive to natural fish motion in underwater

videos in addition to features also representing distinguishable

shape and textural information specific to fish in a supervised

training hierarchy. The motivation behind using such a deep neu-

ral network is to model complex and highly nonlinear attributes

in underwater imagery of fish. These attributes are not modelled

effectively by conventional machine learning algorithms and im-

age processing techniques (Hinton and Salakhutdinov, 2006;

Larochelle et al., 2009). This hybrid approach has resulted in a

detection accuracy at reasonable level for use of this technique in

fish detection from recorded videos.

The most important gain of this research is high detection ac-

curacy of freely swimming fish. With our proposed hybrid system

that incorporates motion sensitive features, taken as input to the

R-CNN, we are able to achieve 87.44% detection accuracy on the

FCS dataset. This performance exceeds the best reported results

on this dataset by a significant margin. The second best average

accuracy of 81.80% for all seven categories of variability has been

produced using KDE to model background and foreground

objects by capturing texture information in very low contrast

regions of the video frames (Spampinato et al., 2014). An inter-

esting observation can be drawn from Table 3 for video classes

Dynamic background, Camouflage foreground object and Hybrid

videos that the performance gap between our proposed hybrid

system and rest of the techniques is significantly wide. Dynamic

background videos exhibit disturbance in water surface and move-

ment of aquatic plants which causes confusion with motion of

fish. Therefore, KDE, ML-BKG, and TKDE algorithms, which are

based on estimating foreground data distribution by modelling

background data, fails in separating motion of fish and non-fish

objects. EIGEN and VIBE algorithms also produced poor perfor-

mance due to similar reasons. Here, our proposed hybrid system

utilizes the fish-dependent features captured through the R-CNN

component using greyscale images in accurate detection of fish.

On the other hand, fish in Camouflage foreground object videos

are extremely hard to segregate from the background. Therefore,

all the algorithms once again fail to yield better results due to in-

ability in creating difference between foreground and background

models. Here, our approach makes use of the motion information

from GMM and optical flow to maximize its fish detection poten-

tial as shape, texture and colour of fish in this case resemble the

background and are difficult to detect by the R-CNN component.

Similarly, Hybrid videos combine all the challenges of other six

classes and our proposed hybrid system is more effective than all

other approaches. To further endorse the effectiveness of our ap-

proach, we employed a larger dataset by including LCF-15 with

93 videos. Our solution acquired an average accuracy of 80.02%.

Table 2 lists the comparative performance of our proposed hybrid

system with three other techniques, namely GMM, optical flow

and R-CNN, which are the components of our overall system.

The GMM outperforms optical flow and standalone R-CNN,

trained on raw images, with a significant margin, for the FCS

dataset. On the LCF-15 dataset, the GMM produces better results

than optical flow and is comparable with the R-CNN. This signi-

fies effective learning of the background model by the GMM on

every new video sequence. The model covers all background var-

iations exhibited by non-fish objects for a static underwater cam-

era configuration, which assists in detecting even subtle

movements through non-uniform change in pixel intensities that

does not match with the distribution of background pixels.

We observe that the training of the GMM background model

balances the rate of false alarm and misdetection, which produces

a better F-score. The GMM and its variants are considered to give

excellent performance in general for motion-based object detec-

tion tasks (Yong, 2013; Spampinato et al., 2014). Optical flow, on

the other hand, lagged behind all other methods in terms of per-

formance on both datasets. The reason behind this behaviour can

be attributed to the non-trainable structure of this algorithm, as

the system cannot adapt to the dynamic environment in the vid-

eos. There is no learning involved to discriminate background
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and foreground modelling, like that in the GMM and neural net-

works. Optical flow involves a direct comparison between adja-

cent frames of video and any slight disturbance in the pixel

intensity, either due to fish or non-fish objects generating lumi-

nosity variation, translates into a valid motion. This gives rise to

numerous false alarms, which results in a very high recall

but consequently a low precision that ends up in producing low

F-score. Since the datasets we have chosen involve high environ-

mental variation, especially in the FCS dataset, optical flow fails

to perform well as opposed to the other algorithms. On compara-

tive grounds, both GMM and optical flow lags our proposed hy-

brid system for the FCS and LCF-15 datasets. Another

Figure 5. Example of fish detection outcomes by various algorithms. Left to right, ground truth, optical flow, GMM, stand-alone R-CNN, and
proposed hybrid system on all seven categories of FCS dataset category (the first seven rows) and one video of LCF-15 dataset (the last row).
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explanation for relatively worse performance of these approaches,

as compared with the proposed system shown in Table 2, is an

important observation that can be made by watching the videos

in the datasets. The fish in each frame may not necessary show

motion and sometimes remain dormant for multiple frames,

even though for most of the time they are swimming, making the

Table 3. F-scores (in percentage) for different methods on FCS datasets for fish detection, as given in Spampinato et al. (2014).

Video class KDE ML-BKG EIGEN VIBE TKDE
Our hybrid
system

Blurred 92.56 70.26 81.71 85.13 93.25 86.76
Complex background 87.53 83.67 74.78 74.17 81.79 89.54
Crowded 82.46 79.81 73.87 84.64 84.19 84.27
Dynamic background 59.13 77.51 71.48 67.01 75.59 90.36
Luminosity change 72.06 82.66 70.41 70.37 72.95 81.44
Camouflage foreground object 54.14 73.51 70.20 76.30 82.23 89.97
Hybrid videos 85.69 72.20 80.69 79.75 82.63 91.50
Average 76.22 77.08 74.73 76.76 81.80 87.44

The results of our proposed system are copied from Table 2 for easy comparison in this table. Highest scores are highlighted in bold.

Figure 6. Examples of false detection of fish by all algorithms including our proposed hybrid system. Here, bounding boxes signify either miss
detections of fish or false alarms. The black and white images are corresponding ground truths.
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scenes dynamic. The GMM sometimes confuses the fish with the

stationary profile as background, especially when the appearance

of fish matches the background. Therefore, lack of motion infor-

mation in video frames results in failure to detect fish by the

GMM and optical flow. The R-CNN on the other hand is a tai-

lored neural network used for object localization in the images

(Ren et al., 2017) and learns to capture fish-dependent informa-

tion from stationary images.

Underwater fish detection in unconstrained environments is a

challenging task as the main aim lies in segregating fish and ig-

noring non-fish entities in the entire video frame. Conventional

machine learning and image processing algorithms are generally

designed to detect the objects of interest in the datasets where

they exhibit their distinct presence in the imagery, and hence are

easier to segment out (Russakovsky et al., 2015). In contrast, a

high degree of confusion in separating fish with vibrant, diverse

and variable non-fish objects in underwater videos results in a

performance compromise for a standalone R-CNN with accuracy

of 64.99 and 77.30% on the FCS and LCF-15 datasets, respec-

tively. As mentioned earlier, many videos, especially in the FCS

dataset, lacks textural and shape information of fish, a necessary

ingredient to yield better performance by systems like standalone

R-CNN. This problem is effectively solved by our proposed hy-

brid system using and learning the information from motion-

sensitive and textural features. Figure 6 shows some results from

the FCS and LCF-15 datasets where all algorithms including our

proposed system failed to detect fish. These are the extreme cases

of blurriness, camouflage, water murkiness, and unrecognizable

orientation, texture, and shape of fish which either results in gen-

erating false alarms or miss detections. In these situations, it is ex-

tremely difficult to capture both motion-based and shape/

texture-based features.

In the future, we aim to employ a unified deep architecture ca-

pable of processing the video sequences in real-time through rig-

orous optimization of our algorithm and better mathematical

modelling. Such a setup will be applicable for fish detection as

well as their species classification at the same time and, therefore,

will be more suitable for effective fish fauna sampling.

Furthermore, the accuracy of the system can be improved by

tracking the paths of moving fish and having prior information

of their movement in several frames. This step can improve the

accuracy of detection in the video frames where the proposed ap-

proach fails to recognize fish due to extreme blurriness and the

camouflage of the background. We plan to incorporate this proc-

essing step using recurrent neural networks (Gordon et al., 2018)

with temporal processing capability in videos.

Conclusions
In this article, we have presented an automatic method that

employed deep R-CNN networks to detect and localize fish

instances in unconstrained underwater videos that exhibit various

degrees of scene complexity. The major contribution of this work

is that it utilizes a hybrid approach involving GMM and optical

flow outputs to combine motion sensitive input features with raw

video frames carrying textural and shape information. This mixed

data is used as input to a deep R-CNN to fine-tune the categori-

zation of fish in the presence of non-fish entities in the video

frame. This assisted in achieving state-of-the-art results for the

fish detection task as confirmed by the comparative study. The

proposed hybrid system requires relatively more computational

resources as compared with the conventional computer vision

and machine learning techniques, but comes with the benefit of

higher accuracy. However, with an advent of fast microprocessors

and GPUs, complex mathematical operation involved in deep

neural networks like CNN can be performed quickly, even mak-

ing them suitable for tasks requiring near real-time processing.

Therefore, combining the hybrid fish detection with other fish-re-

lated tasks like fish classification even using deep learning

(Salman et al., 2016) and tracking can be made possible in the

pursuit of realizing fully automated systems for deployment in

real world applications of fisheries. We believe that this research

will help scientists related to fisheries in adopting automatic

approaches for detection, classification and tracking of fish fauna

in non-destructive sampling. Moreover, in the future, we aim to

employ a unified deep architecture capable of processing the

video sequences in real-time through rigorous optimization of

our algorithm and better mathematical modelling. Such a setup

will be applicable for fish detection as well as their species classifi-

cation at the same time and therefore, will be more suitable for ef-

fective fish fauna sampling.
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