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a b s t r a c t 

We propose a steganography based technique to generate adversarial perturbations to fool deep models 

on any image. The proposed perturbations are computed in a transform domain where a single secret 

image embedded in any target image makes any deep model misclassify the target image with high 

probability. The attack resulting from our perturbation is ideal for black-box setting, as it does not re- 

quire any information about the target model. Moreover, being a non-iterative technique, our perturba- 

tion estimation remains computationally efficient. The computed perturbations are also imperceptible to 

humans while they achieve high fooling ratios for the models trained on large-scale ImageNet dataset. 

We demonstrate successful fooling of ResNet-50, VGG-16, Inception-V3 and MobileNet-V2, achieving up 

to 89% fooling of these popular classification models. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Deep Neural Networks (DNNs) have demonstrated outstanding

performance for many challenging tasks in speech recognition [1] ,

natural language processing [2] and classification [3–5] . Convolu-

tional Neural Networks (CNNs) based image classification [4] has

revolutionized the use of deep learning in computer vision. In the

last few years, researchers have been continuously devising deep

learning based solutions for many complex tasks in the areas of

medical science [6] , safety and security [7] , and self-driving vehi-

cles [8] . 

As deep learning is now being also used in security-critical

applications, the vulnerability of the state-of-the-art DNNs to ad-

versarial attacks has recently attracted significant interest of re-

searchers [9] . These attacks come in the form of a small pertur-

bation to the input to fool the network to change its prediction

altogether. At the same time, the perturbation remains impercep-

tible to humans. There are several existing techniques for crafting

such perturbations [10–12] . These techniques either cause the net-

work to predict a specific class for the input, i.e. targeted attack,

or make it predict any incorrect output, i.e. non-targeted attack.

In the domain of natural images, Moosavi-Dezfooli et al. [13] com-

puted image-agnostic perturbations that can fool networks on any

image, in contrast to the commonly used perturbations that fool
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eep models on individual images. However, the perturbation com-

uted by Moosavi-Dezfooli et al. are not completely imperceptible

o the Human visual system. Moreover, their technique is compu-

ationally expensive as it must iterate over a large training data to

ompute the perturbation. Furthermore, it requires complete infor-

ation of the weights of the target network, hence it is inherently

ot suitable for black-box settings where this information is not

vailable. 

In this paper, we propose another kind of image-agnostic

i.e. universal) perturbation that is computed efficiently and also

oes not require any network information. Moreover, it remains

mperceptible to Humans, see Fig. 1 . We leverage steganography

o compute the desired perturbations, where we hide a secret im-

ge inside the image to be classified (i.e. host image). The per-

urbation is essentially performed in a transform domain (wavelet

ransform), as opposed to the existing convention of manipulat-

ng images in the pixel domain. We address the key challenge

f identifying the appropriate frequency band/component that can

e embedded in the host images for fooling the networks while

reserving the perturbation imperceptibility. This completely erad-

cates the need of computing network gradients for the pertur-

ation estimation. Interestingly, we find that a single secret im-

ge can be used to fool multiple networks trained on large-scale

atasets with high probability. Nevertheless, we analyze multiple

ecret images for thoroughness. We demonstrate successful fool-

ng of the state-of-the-art ImageNet models, that includes ResNet-

0 [3] , Inception-V3 [14] , VGG-16 [15] and MobileNet-V2 [16] . 

https://doi.org/10.1016/j.patrec.2020.04.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.04.025&domain=pdf
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Fig. 1. Adversarial examples created with Discrete Wavelet Transform and Singular 

Value Decomposition based Steganography that successfully fool the state-of-the- 

art DNNs. A secret image (left) is embedded in the host images (middle) in the 

frequency domain to get adversarial examples (right). Labels predicted by ResNet- 

50 are also indicated. 
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. Related work 

Adversarial attacks on DNNs provide an opportunity to estimate

 network’s robustness in adversarial settings before its deploy-

ent in the real-world. They have recently attracted significant at-

ention of the research community [9] . Szegedy et al. [11] first ex-

osed the susceptibility of the state-of-the-art DNNs to small per-

urbations to input images that can lead them to incorrect predic-

ions. Since then, several techniques have emerged to generate ad-

ersarial perturbations. Goodfellow et al. [17] presented the Fast

radient Sign Method (FGSM) to efficiently generate adversarial

erturbations for a given image using one step gradient ascend.

nstead of one large step, Kurakin et al. [18] proposed to take mul-

iple small steps in an iterative method to compute the gradients

ntil the perturbation achieves the required fooling. 

Dong et al. [19] presented an iterative method for computing ad-

ersarial perturbations based on momentum that avoids local max-

ma during the iterative process. They showed that the developed

lgorithm can also deceive adversarially trained networks. Success-

ul targeted attack using an adversarial patch has been demon-

trated by Brown et al. [20] that can deceive a network on a

arge number of images. In their technique, adversarial patches

re crafted under Expectation Over Transformation framework. The

atches are then added/replaced at a specific location in the natu-

al image to make it an adversarial example. The adversarial per-

urbations generated by Wagner [21] are designed to attack the de-

ensive distillation algorithm of Papernot et al. [22] . The generated
erturbations are forced to be quasi-imperceptible by restricting

heir l 0 , l 2 or l ∞ 

norm. 

Papernot et al. [10] generated adversarial examples by putting

n upper bound on the l 0 -norm of the perturbation rather than

n l 2 or l ∞ 

norm. Their method computes the adversarial saliency

ap for the network gradients after modifying the pixels of the

nput image one at a time. The algorithm alters the values of only

hose pixels that have greater affect on fooling Su et al. [12] . mod-

fied only one pixel of the image to create adversarial example.

heir method uses Differential Evolution [23] to estimate the spa-

ial location and RGB values of the adversarial pixel in the image.

nother iterative method of computing adversarial perturbations

s DeepFool algorithm proposed by Moosavi-Dezfooli et al. [24] .

heir method is based on linearizing the decision boundaries of

he deep neural network around the input image. A small pertur-

ation vector is added to the image at every iteration that takes

he perturbed image towards the decision boundary. The perturba-

ion signal at every iteration is accumulated to compute the final

erturbation. 

All the above mentioned methods can fool deep models on in-

ividual images for which the perturbation is computed. Moosavi-

ezfooli et al. [13] proposed universal adversarial perturbations to

ool neural networks on any image. These perturbations are gener-

ted by restricting their l 2 or l ∞ 

norm. Although impressive fooling

atios are achieved by their perturbations, the resulting adversar-

al patterns become quasi-imperceptible in the images. Moreover, a

arge amount of training data is required to compute their pertur-

ations. Universal perturbations are also constructed by Khrulkov

nd Oseledets [25] using smaller number of images. They obtained

he perturbations by taking singular values of the hidden layers’

acobian matrices.Mopuri et al. [26] computed data independent

dversarial perturbations using fast-feature-fool method. 

The universal adversarial perturbations discussed above require

raining data for computing the manipulative signal for network

ooling. The iterative nature of the techniques to compute those

erturbations also makes them computationally expensive. For in-

tance, for the perturbations based on network gradient estimates,

.g. [13] , GPU based hardware is required for computing a single

erturbation in a reasonable time. In contrast to these techniques,

he method proposed in this work does not any require training

ata. Furthermore, no information regarding the targeted network

s required. This also makes our adversarial perturbation an ideal

hoice for black-box attacks. Moreover, requiring no gradient com-

utations makes our technique computationally efficient. 

. Problem formulation 

We use the following notations for the formal presentation of

he problem. Let x ∈ R 

m ×n be a clean image that is given as an

nput to a well-trained DNN classifier f(.) . We ignore the num-

er of image channels for notational simplification. The classifier

aps the image to its correct label ‘ � ’ with a high probability

.e. P ( { f(x) : x → � } ) → 1 . Our goal is to generate a perturbation sig-

al ‘ η’ which when embedded in the clean input image satisfies

he following constraint: 

 ( f ( x + η) � = f (x ) ) ≥ ψ, (1)

here ψ is referred to as the fooling ratio, defined as: 

 = 

|{ f (x i + η) � = f (x i ) }| 
M 

, ∀ i ∈ { 1 , 2 , . . . , M} (2)

here M is the total number of samples in our dataset. Notice

hat, whereas ‘ η’ is shown to be directly added to the images in

he above formulation, it is not necessary to treat it as an additive

ignal during its estimation. This is one of the key differences in

ur treatment of ‘ η’ and its more common handling in the existing
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Fig. 2. Illustration of different com ponents of 2D Wavelet Transform of the image. 

The LL and HH components respectively contain the low and high frequency in- 

formation while HL and LH components contain both the high and low frequency 

information. 
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methods that restrict themselves to the pixel domain to treat ‘ η’ as

an additive noise. 

The existing adversarial attacks are directly aimed at pixel ma-

nipulation. Although we represent ‘ η’ in Eq. (1) following the com-

mon convention, we actually compute the perturbation in a trans-

form domain, which results in a manipulated image that is ob-

tained with the inverse transform. This will be clarified in the next

Section. Another major difference between our computation of ‘ η’

and its conventional treatment in the literature is in terms of re-

stricting its norm to control the perturbation perceptibility. The use

of transform domain allows us to manipulate the images without

paying particular attention to the pixel domain norm restrictions.

As will be seen shortly, the smooth holistic manipulations resulting

from the proposed technique intrinsically result in imperceptible

patterns embedded in the adversarial images. Following the com-

mon convention, we alternatively refer to the manipulated images

as the ‘adversarial examples’ in this paper. 

4. Proposed approach 

To create an adversarial example out of a natural image, we tap

into the advances of Discrete Wavelet Transform (DWT) and Sin-

gular Value Decomposition (SVD) based steganography [27] , [28] .

The key intuition is that DWT has unique characteristics in terms

of identifying the frequency regions where the external informa-

tion can be hidden effectively in an image without being easily

perceivable [27] . The main concept of our technique is that, we

hide the low frequency components of a secret image inside the

low frequency components of the host image, and also manipu-

late the low-to-high frequency components of the resulting image

with the affine transformations of the secret image. The choice of

hiding the low frequency components of the secret image and its

manipulated low-to-high frequency components is based on the

intrinsic properties of these components. In this work, we some-

times refer to the manipulated image as the stego-image to better

contextualize our method in the area of steganography. The stego-

image/adversarial example is finally used to deceive the classifier. 

4.1. No training data and target model required 

The popular techniques in the literature to generate universal

adversarial perturbation (e.g. [13,29] ) require training images that

are used to optimize the perturbation signals, generally with re-

spect to a target model to be attacked. This makes the techniques

both time consuming as well as unattractive, because the target

model can often be unknown in practice. The technique proposed

in this work is agnostic to the target models, and it also does not

require any particular training data. All that is required is a suit-

able secret image that can be embedded in any image to make the

latter an adversarial example. This is a highly desirable property

for a universal adversarial attack. It is noted that we make a care-

ful selection of the secret image. Further details on the selection of

the secret image are provided in Section 5.1 . 

4.2. 2D Discrete wavelet transform decomposition 

We make use of 2-Dimensional ‘Haar’ based DWT [30,31] to de-

compose an image into its four components, denoted by LL, LH, HL,

HH. The LL-component is obtained by Low-pass filtering the image

in the horizontal direction and the vertical dimension, leading to

a feature map that contains the low frequency information of the

source image. The LH-component performs the Low-pass filtering

in the horizontal direction and High-pass filtering in the vertical

direction. This order reverses in the HL-component, while the HH-

component uses High-pass filtering in both directions. Each of the

resulting feature maps are components of the original image that
ave their own unique properties. We illustrate the 2D Haar DWT

omponents of an example image in Fig 2 . 

.3. Singular value decomposition (SVD) 

We use the Singular Value Decomposition (SVD) to merge the

L-components of the host and secret images, as explained below.

n LL-component contains most of the image information in the

ow frequency bands where slight manipulation does not cause

rastic changes in the perception. Using the SVD we can decom-

ose an image component, say ˆ x ∈ R 

m ×n a follows: 

ˆ 
 = U ∗ S ∗ V T

 , (3)

here U ∈ R 

m ×m and V ∈ R 

n ×n are orthogonal matrices, and S ∈
 

m ×n is the diagonal matrix of singular values. In this work, we

pply SVD to each channel of an RGB image individually for fur-

her processing. 

.4. Constructing the adversarial examples 

Let x 1 be the host image and x 2 be the secret image. The afore-

entioned DWT decomposition is applied to both x 1 and x 2 to get

heir DWT components. First, we are interested in x 1 LL - the LL-

omponent of x 1 and x 2 LL - the LL-component of x 2 . We apply SVD

o these components and fuse their singular values as follows: 

 = (1 − α) S x 1 LL 
+ αS x 2 LL 

, (4)

here S comp denotes the singular value matrix (see Eq. 3 ) of the

WT component in the subscript, and α is the hyper-parameter of

ur technique. We note that the above fusion of singular values is

erformed individually for all the channels in our images. 

We reconstruct the LL-component of the adversarial image, say

 , using the fused singular values in Eq. (4) along the U and V ma-

rices of x 1 . Hence, we refer to this component of the adversarial

xample as y 1 LL in the text to follow. Notice that, the dominant

ow frequency features in the adversarial image are mainly influ-

nced by the original (i.e. host) image. On the other extreme, we

orrow the HH-component of the adversarial image directly from

he secret image, i.e. x 2 HH . Human perception often finds the HH-

omponent of DWT close to white noise, see the DWT HH Fig. 4 .

eplacing this component of an image with that of another im-

ge does not drastically change the Human perception of the origi-

al image. However, the high frequency variations in the quantized

GB values significantly distort the image for a DNN. 

In order to strengthen the original perception of the host

mage, we also use the LH-component of the host image as
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Fig. 3. Image agnostic perturbations are computed using DWT and SVD based steganography. Host and secret images undergo 2D haar wavelet transform to get four 

frequency components (LL, LH, HL, HH). Each channel of the LL-component of both images is decomposed into singular values which are then fused to form the LL-component 

of the desired adversarial example. The LH and HH components of the desired image are borrowed from the host and secret image, respectively. The HL-component is 

also a fusion of the respective components of the two original images. Inverse transform is computed over these four components to form and adversarial example with 

imperceptible perturbations. 
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he LH-component of the adversarial image. However, we intro-

uce slight modifications to the HL-component of the host im-

ge as follows. We take x 2 HL , and rotate it at four different an-

les, i.e. −5 o , 5 o , −10 o , 10 o . The rotated components are averaged to

orm ˜ x 2 HL and then fused with x 1 HL under a convex combination as

ollows: 

 2 HL = (1 − β) ∗ x 1 HL + β ∗ ˜ x 2 HL , (5)

here β is a hyper-parameter that controls the contribution of

ach component in the fusion process. Notice that we write

.H.S. of Eq. (5) as y 2 HL because of the fusion. It is worth men-

ioning that whereas we systematically choose the rotation angles

or the affine transformations, random rotations in [ −10 o , 10 o ] also

ork equally well. The main intuition behind performing the affine

ransformations to x 2 HL is to confuse a DNN with those transforma-

ions that can naturally occur in the images. Other affine transfor-

ations can also be explored for the same purpose. 

Finally, to reconstruct the adversarial/stego image, we use the

nverse DWT. The inverse DWT is executed over the components

 y 1 LL , x 1 LH , y 2 HL and x 2 HH }. The overall process of generating the

dversarial image is illustrated graphically in Fig. 3 . The resulting

dversarial examples have embedded perturbations that are gen-

rally very hard to perceive by humans. However, state-of-the-art

NNs get confused in classifying those images, despite showing

igh confidence on the correct predictions of the host/original im-

ges. 

. Experiments and results 

To validate our stagnographic universal adversarial attack, we

erform extensive experiments with ImageNet 2012 [32] . We select

our popular DNNs, i.e. ResNet-50 [3] , Inception-V3 [14] , VGG-16

15] and MobileNet-V2 [16] and fool those on the ImageNet val-

dation set. Our choice of the networks is based on their versa-

ility and established performance. Recall that our technique per-

orms non-targeted black-box attacks. As such, no training data is

equired for our attack, except the secret image. This allows us to

se all the images in the validation set of the ImageNet as our

est data (except the secret image). This is in contrast to the ex-

sting methods for computing the universal adversarial perturba-

ions, e.g. [13] , that consume a large number of images from the
ataset for training, and report result only on a smaller subset of

he ImageNet validation set. 

.1. Secret image selection 

Our technique embeds a secret image in the host image to cre-

te adversarial examples. This gives us full freedom to use any

mage as the secret image. However, it was observed in our ex-

eriments that a secret image with more edges is preferable un-

er our scheme. To identify more desirable secret images, we can

ake advantage of conventional filtering techniques. In this work,

e use Sobel filter to extract edge information from the images to

ecide their suitability as the secret image. The used filter operator

s given in Eq. 6 . 

 x = 

[ −1 0 1 

−2 0 2 

−1 0 1 

] 

� x 2 and G y = 

[ −1 −2 −1 

0 0 0 

1 2 1 

] 

� x 2 , 

(6) 

here � denotes the convolution, and G x and G y are the feature

aps preserving the vertical and horizontal edge information. 

In order to choose the secret image we use an empirical thresh-

ld on the Edge Pixels (EP) identified by the filter. The EP value

ounts the number of pixels in the edges extracted by the filter.

e illustrate the five secret images used in our experiments in

ig. 4 . The top row of the figure shows the secret images with their

P values. The bottom row shows the resulting adversarial exam-

les. We have intentionally chosen the original/clean image with a

elatively plain background to clearly illustrate the perceptibility of

he perturbations. As can be seen, based on the edge information

n the secret image, the EP values decrease from Fig. 4 (a) to (e).

his also results in reducing the perturbation perceptibility in the

dversarial examples. However, secret images with smaller EP val-

es also result in the adversarial examples that have less fooling

atios. 

In Table 1 , we summarize the fooling rates resulting on Ima-

eNet validation set using the five secret images shown in Fig. 4 .

e emphasize, that the results are on 49,999 ImageNet samples.

t can be seen that with the images having EP values around 15K

 Fig. 4 ), the fooling ratios for the state-of-the-art ImageNet models

s significant, reaching up to 89% fooling for the MobileNet. These
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Fig. 4. Adversarial examples formed by different secret images. The top row shows the secret images along their Edges Pixel (EP) values. The bottom row presents the 

adversarial examples generated using the corresponding secret images. With the larger number of edges in a secret image, the fooling rate increases (see Table 1 ), however 

it also makes the perturbation quasi-imperceptible. 

Table 1 

Fooling rates (%) using the five secret images illustrated in Fig. 4 . The rates are 

computed for 49,999 images of ImageNet validation set. We use hyper-parameter 

values α = 0 . 1 , β = 1 . 

Fooling Rate (%) 

Different Secret images ResNet-50 VGG-16 Inception V3 MobileNet V2 

Image 1 84.77 87.19 79.19 89.13 

Image 2 82.11 84.96 74.51 86.61 

Image 3 71.76 73.88 64.59 77.52 

Image 4 42.72 38.65 41.25 48.26 

Image 5 42.61 38.45 41.78 48.74 

Table 2 

Ablation analysis with different steganographic modifications applied to the clean 

image. Image 3 in Fig. 4 is used as the secret image. 

Fooling Rate (%) 

Modification ResNet-50 VGG-16 Inception V3 MobileNet V2 

Image embedding 29.94 23.69 28.91 34.51 

HH component 30.96 23.7 30.19 36.91 

HL component 60.8 61.73 54.25 66.74 

All Hybrid 71.76 73.88 64.59 77.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. ResNet-50 fooling rate (%) for secret image 4 using different values of α and 

β . The x-axis values for α are in the range [0, 0.1]. 10x scaling is used for better 

readability. 
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results are especially intriguing because the fooling is achieved us-

ing a non-optimization based method. Moreover, the attack is con-

ducted in a true black-box setup, where we have not assumed any

information about the target model. A single secret image is able

to form adversarial examples that generalize well across the net-

works having varied architectures. 

5.2. Discussion 

As an ablation study of the overall technique, we modify the

method of embedding the secret image in the clean image and

analyse the results. As the first instance, we simply embed the Im-

age 3 (as shown in Fig. 4 ) using steganography. The fooling ratios

for the four networks are reported against the Image embedding

modification in Table 2 . In the second experiment, we additionally

modify the HH-component of the DWT using the procedure dis-

cussed in Section 4 . The result of these experiments are reported

against HH component modification in the Table. Similarly, the last

two rows of the Table report the fooling ratios when additional

HL-component modification is performed, and when all the pro-

posed modifications (in Section 4 ) are performed. It is clear from

the Table that each of our proposed modification to the individ-

ual component of DWT adds to the eventual fooling ratio achieved

by our technique. Note that, we deliberately use Image 3 instead

of Image 2 ( Fig. 4 ) in this Table to emphasize that this trend re-
ains generic for different secret images used under the proposed

echnique. 

Recall that the proposed approach requires two hyper-

arameters that govern the fooling ratio and perceptibility of

he perturbations in the adversarial examples. The first hyper-

arameter is α that decides the strength with which the secret

mage is embedded in the host image while the other hyper-

arameter is β which determines the strength of embedding the

ertical edges in the host image. The fooling ratios of ResNet-

0 network with different values of α and β are summarized in

ig. 5 . As the value of α increases from 0.01 to 0.1, the strength

f embedding the secret image in the host images increases and

ence the fooling ratio increases. Varying β values from 0.1 to 1

n Eq. (5) , multiple y HL components are generated. These HL com-

onents are then used to generate adversarial examples, and thier

ooling prowess is analyzed. Fig. 5 clearly shows that as the value

f β increases, the fooling ratio also increases. With an increase

n the values of α and β , fooling ratio increases until a point ( α
 0.1 and β = 1) where we get maximum fooling ratio with im-

erceptibility. On further increasing these values, the fooling ra-

io increases further, albeit slightly. Nevertheless, it also makes the

erturbations perceptible for the Human visual system. The plot is

hown for Image 4 in Fig. 4 . 
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Fig. 6. Random adversarial examples with perturbation norms ( � 2 ) close to the 

mean perturbation norms reported in Table 3 . The perturbations remain largely im- 

perceptible to the Human visual system. 

Table 3 

� 2 -norm of the perturbations for different secret images. 

Different Secret l 2 -norm l 2 -norm l 2 -norm 

images (Min Val) (Max Val) (Mean Val) 

Image 1 11.49 103.96 48.85 

Image 2 14.15 103.66 49.42 

Image 3 8.56 98.33 34.94 

Image 4 4.46 96.74 29.75 

Image 5 3.5 95.71 28.13 
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.3. Perturbation perceptibility 

Adversarial examples are considered more effective when the

nderlying perturbations to the image remain imperceptible to hu-

ans. Since we do not modify the image in the pixel domain, our

ethod naturally results in hard to perceive perturbations. Never-

heless, the resulting adversarial images do differ from the original

mage in terms of e.g. brightness, sharpness. To quantify the differ-

nces, we summarize the � 2 -norm of the difference between the

riginal and adversarial images in Table 3 . The reported values are

or all five secret images shown in Fig. 4 . The values are given for

-bit images with range [0–255]. As can be seen, as the edges in

he secret images increase, the difference between the original and

dversarial images increases. It should be noted that we report the

 2 -norm of the difference following the existing conventions. Since

ur technique essentially modifies the image in the frequency do-

ain, even significant � 2 -norm perturbations still remain largely

mperceptible to humans under our technique. We provide exam-

le visualizations to corroborate this claim in Fig. 6 , where random

xamples having perturbation norms close to the mean values of

he norms in Table 3 are shown. 
. Conclusion 

We developed an adversarial attack on deep learning inspired

y steganography. The proposed attack embeds a secret image in-

ide any host image to fool any network on the resulting adver-

arial example. This doubly-universal attack achieves high fooling

ates ( ~ 80%) on a variety of state-of-the-art networks under tru

alck-box settings. To perform the attack, we mixed the low fre-

uency information of the secret and the host image, while re-

lacing the high frequency information of the host image with

hat of the secret image. It is observed that secret images with

arger number of edges are more suitable for the proposed at-

ack. Depending upon the secret image, the resulting adversarial

erturbations remain imperceptible to quasi-imperceptible, while

aintaining good fooling rates across the networks. The proposed

on-optimization attack is performed holistically on the images by

omputing their discrete wavelet transforms and singular value de-

ompositions. 
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