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Abstract

Understanding the semantics of objects and scenes using multi-modal RGB-D sensors serves many robotics applications.
Key challenges for accurate RGB-D image recognition are the scarcity of training data, variations due to viewpoint changes
and the heterogeneous nature of the data. We address these problems and propose a generic deep learning framework based
on a pre-trained convolutional neural network, as a feature extractor for both the colour and depth channels. We propose
a rich multi-scale feature representation, referred to as convolutional hypercube pyramid (HP-CNN), that is able to encode
discriminative information from the convolutional tensors at different levels of detail. We also present a technique to fuse
the proposed HP-CNN with the activations of fully connected neurons based on an extreme learning machine classifier in
a late fusion scheme which leads to a highly discriminative and compact representation. To further improve performance,
we devise HP-CNN-T which is a view-invariant descriptor extracted from a multi-view 3D object pose (M3DOP) model.
M3DOP is learned from over 140,000 RGB-D images that are synthetically generated by rendering CAD models from different
viewpoints. Extensive evaluations on four RGB-D object and scene recognition datasets demonstrate that our HP-CNN and

HP-CNN-T consistently outperforms state-of-the-art methods for several recognition tasks by a significant margin.

Keywords Object categorization - Scene recognition - RGB-D image - Multi-modal deep learning

1 Introduction

In realizing long-term mobile robot autonomy, semantic
scene and object understanding capabilities are crucial and
have gained considerable research attention in the past
decade (Asif et al. 2015b; Bo et al. 2011, 2012; Lai et al.
2011; Lowry et al. 2016; Schwarz et al. 2015; Zaki et al.
2016). Generally, developing a highly accurate and robust
recognition system involves training the robotic vision in an
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off-line mode where the robot is given a set of labelled train-
ing data and is then asked to predict the semantics of novel
instances in a complex environment. Performing scene and
object recognition can be very challenging due to a range of
factors; drastic illumination and viewpoint changes, heavy
clutter, occlusions and the problem of perceptual aliasing
where two or more scenes may look extremely similar, forc-
ing the robot to define subtle discriminative features for
recognition (Angeli et al. 2008; Lowry et al. 2016).

In developing a highly accurate and robust visual recog-
nition system, certain design criteria and their contributing
factors should be put into consideration. Firstly, the recogni-
tion system should acquire a good generalization capability
for various domain types so that the robot can adapt to a novel
environment which are significantly peculiar from the one
that the robot has been trained on. To realize this criterion, the
system must be presented with a set of labelled training data
containing all possible variations. Furthermore, the learned
system should be robust to the effect of intra- and inter-class
variability that can be a challenging nuisance for recogni-
tion. Therefore, the feature representation must be descriptive
of the visual elements being captured as well as discrimi-
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native to differentiate between two different elements that
may appear very similar. Moreover, the recognition algo-
rithm must be efficient to perform real-time decisions which
is essential for robotics applications. The advent of low-cost
multi-modality sensors such as RGB-D cameras has opened
up a number of possibilities to fulfil these design considera-
tions.

RGB based visual recognition algorithms have moved
from hand-crafting features to learning features through deep
neural networks. Particularly, convolutional neural networks
(CNN) based methods have obtained unprecedented perfor-
mance for RGB visual recognition (Krizhevsky et al. 2012),
where the success is mainly credited to the availability of
computational resources and large-scale labelled training
datasets with diverse variations [e.g. ImageNet (Deng et al.
2009)]. However, labelled training data for RGB-D recog-
nition is currently limited and manual annotation of images
captured by low-cost depth sensors such as microsoft kinect
camera is time consuming and expensive. Additionally,
unlike the RGB based recognition which could benefit from
high resolution data, RGB-D sensors have low resolution,
capture noisy data and contain multi-modal heterogeneous
data which pose challenges for the learning algorithms. To
avoid these problems, recent works (Lai et al. 2011; Bo et al.
2011, 2012; Socher et al. 2012; Cheng et al. 2014; Asif et al.
2015b; Liu et al. 2015b; Jhuo et al. 2014; Zaki et al. 2015)
have resorted to shallow networks which are more tractable
to train using limited amount of data. Deep neural networks
require large-scale annotated training data otherwise they
tend to result in poor convergence and overfitting (Bengio
et al. 2013).

Recent development has shown that CNN models that
were trained on a large-scale datasets can be effectively
used as a generic feature extractor for a wide range of other
applications (Krizhevsky et al. 2012; Chatfield et al. 2014;
Razavianetal. 2014; Gupta et al. 2014; Azizpour et al. 2016),
even without re-training on the target tasks. The factors of
transferability of the learned features in CNN can vary from
the architecture of network and data distribution (Azizpour
etal. 2016) but most techniques extracted the fully-connected
layer activations before the classification layer as a feature
representation, leaving the antecedent convolutional layers
relatively unexplored. Although the former acquires high
degree of semantically descriptive information, it does not
preserve spatially relevant information of the input (Hariha-
ran etal. 2015). Therefore, they are less effective in capturing
subtle details (He et al. 2015). Expensive pre-processing
steps such as data augmentation and segmentation (Chat-
field et al. 2014; Razavian et al. 2014) are generally carried
out as a complimentary factor for the recognition systems.

In this paper, we propose an effective recognition frame-
work based on a deep CNN with a particular attention to
address the above problems. Firstly, we formulate a tech-
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nique for transferring knowledge of input from depth sensors
to a model well-trained on a large-scale RGB data which
allows a seamless integration between these modalities. Next,
we propose a global feature representation which utilizes
the activations of all convolutional layers that is able to
encode coarse-to-fine information of the modalities. We
term our proposed representation as convolutional hyper-
cube pyramid (HP-CNN) which is used in conjunction with
the semantically-descriptive features from the fully con-
nected layer. The encoding of this representation is done by
re-sampling the convolutional tensors into three pyramid lev-
els. For each pyramid, multi-scale features are harvested by
employing a spatial pyramid pooling method and the concate-
nation of the pooled features defines the representation for
each pyramid. To average the behaviour of the features from
these multi-scale pyramid, we then apply max pooling over
these features to produce the final HP-CNN representation.
Note that these encoding steps are done for all modalities.
Finally, we propose a late feature fusion technique to com-
bine the features of our HP-CNN and the fully connected
layer from different modalities where we empirically show
that it consistently increases the discriminative property and
compactness of the feature representation. The overview of
our HP-CNN encoding is depicted in Fig. 1.

This paper is a major extension of our previous work
(Zaki et al. 2016) in a number of directions. Firstly, we
perform extensive experiments on additional benchmark
RGB-D visual scene/place recognition datasets including
NYU vl Indoor Scene (Silberman and Fergus 2011) and SUN
RGB-D Scene (Song et al. 2015) besides the evaluation on
object recognition datasets. Secondly, we propose a view-
invariant version of HP-CNN, termed as HP-CNN-T which
is extracted from a multi-view 3D object pose (M3DOP)
model. M3DOP is a deep network learned end-to-end using
RGB-D images of 3D CAD models rendered from multi-
ple viewpoints. Finally, the experimental results and analysis
based on the extended work (see Sect. 6) have reinforced our
hypothesis in the previous work (Zaki et al. 2016) that the
proposed method acquires a high degree of efficacy and gen-
eralization capability as a result of effective transfer learning
and domain adaptation. In summary, our core contributions
are as follow:

1. We present convolutional hypercube pyramid descrip-
tor (HP-CNN) as a discriminative feature representation
that encodes spatially-descriptive information for RGB-
D image recognition.

2. We propose an effective encoding technique for depth
sensor inputs to allow knowledge transfer to a model that
was well-trained on RGB camera inputs (Sect. 3.2).

3. We combine the features from our HP-CNN and the
fully connected layer activations using a feature fusion
method based on extreme learning machines which not
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Fig. 1 Illustration of the proposed convolutional hypercube pyramid
feature extraction. The feature representation is extracted in a coarse-
to-fine manner separately for each RGB, depth and point cloud image.
This is done by resampling the convolutional feature maps into three

only reduces the dimensionality but also increases the
discriminative properties of the features (Sect. 4).

4. We propose HP-CNN-T, a view-invariant descriptor
extracted using multi-view 3D object pose (M3DOP)
model which is trained on a newly generated synthetic
dataset (Sect. 5) to extract 2D and 3D features. We show
that the proposed HP-CNN not only generalizes well for
cross-modality purposes, but also across different sets of
applications. We will make the M3DOP model publicly
available.

2 Related literature
2.1 RGB-D visual recognition
Channel-specific hand-crafted features are among the most

prevalent methods used in prior works for colour and 3D
visual recognition. Generally, a recognition system requires

pyramid levels A, B, and C and concatenate all feature maps at each
pyramid level separately (refer text for detailed description). The sym-
bol @ denotes concatenation

to densely compute descriptors such as SIFT (Lowe 2004)
and spin images (Lai et al. 2011) that describe rapidly chang-
ing elements in localized regions of the image. The encoding
of the global representation is done using a bag-of-visual-
words (BoVW) method which seeks to quantize the densely
sampled features into pre-determined visual vocabularies.
However, these methods require the knowledge of the input
distribution beforehand, which is normally not available in
most real-time robotic applications (e.g. long-term naviga-
tion, object grasping).

Recent works have proposed feature learning methods to
mitigate the need to encode channel-specific features where
the features of multiple heterogeneous modalities can be
readily learned using the same algorithm. These include the
previously proposed convolutional K-Means (CKM; Blum
et al. 2012), convolutional-recursive neural networks (CNN-
RNN; Socher et al. 2012), hierarchical matching pursuit
(HMP; Bo et al. 2012), deep regularized reconstruction inde-
pendent component analysis (RZICA; Jhuo et al. 2014),
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cascaded random forests (CaRFs; Asif et al. 2015b), localized
deep ELM (LDELM; Zaki et al. 2015) and discriminative
feature learning (Asif et al. 2015a). However, these methods
perform independent learning of the modality features and
need to repeat the same process for each modality. Besides
increasing the execution time, the methods do not address
the input heterogeneity problem in designing the represen-
tation. Additionally, the models are trained from relatively
limited training datasets which often leads to sub-optimal
performance.

2.2 Deep learning based visual representation

Inspired by the remarkable performance of the new genera-
tion CNN for RGB visual recognition, many methods exploit
the discriminative properties of the internal CNN layers for
other cross-domain tasks. In acommon scenario, a deep CNN
with an abundance of non-linear computation units is trained
from scratch on a large-scale dataset and the feed-forward
activations at a certain layer are extracted as a feature repre-
sentations for another dataset (Chatfield et al. 2014; Razavian
et al. 2014; Azizpour et al. 2016; He et al. 2015; Zeiler and
Fergus 2014). In most of these recognition tasks, the acti-
vations of the fully connected layers are used as the feature
representation. This approach has shown promising perfor-
mance when transferred to a vast array of target recognition
tasks. However, recent works have demonstrated that the ear-
lier convolutional layers in CNN also contain a degree of
semantically meaningful features. Moreover, in contrast to
the fully connected layers, the activations in the convolu-
tional layers preserve the spatial locations of the input pixels.
Therefore, these layers can be used to extract multi-scale
features (Liu et al. 2015a; Yang and Ramanan 2015) and
more precise localizations of the elements of a scene in the
whole image (Hariharan et al. 2015). For example, Hariharan
concatenated several consecutive convolutional layers and
extracted activations in local windows as a fine-grained pixel
representation. Liu extracted sub-arrays of a convolutional
layer at the regions detected by the previous convolutional
layers in a guided cross-layer pooling technique. In this paper,
instead of using convolutional layers activations as local fea-
tures, we devise a technique to encode a global representation
of the input based on all convolutional layers as a unified
feature tensor which leads to a compact yet powerful repre-
sentation for RGB-D recognition tasks.

It is worth mentioning that the aforementioned methods
performed the knowledge transfer of CNN model to differ-
ent applications but still operated in the same modality space.
Knowledge transfer across modalities (e.g. RGB to depth) is
much more challenging as there exist an ambiguity of the
relationship between heterogeneous modalities that repre-
sent different type of information (i.e. RGB pixels represents
the colour while depth represents the distance from the sen-
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sor). Recent works have obtained encouraging results for
cross-modality recognition by augmenting the target modal-
ity (i.e. depth) to be in a close resemblance to the source
modality (i.e. RGB; Gupta et al. 2014; Schwarz et al. 2015).
We devise two approaches to address this problem. Firstly,
we propose the encoding of the depth maps and the point
cloud so that they closely resemble the typical input of a
pre-trained CNN model. Secondly, we learn deep models
end-to-end specifically for RGB-D recognition tasks. Since
RGB-D training data are expensive to acquire, we propose
to learn these models using synthetic training data which are
generated by rendering 3D models from multiple viewpoints.
By doing so, we show that the recognition performance can
significantly improve for real RGB-D data.

3 Convolutional hypercube pyramid

Objects and scenes captured in the real-world environment
typically lie on non-linear manifolds, especially when deal-
ing with various viewpoint changes and occlusion. However,
most existing methods (Bo et al. 2012; Socher et al. 2012;
Blum et al. 2012) for RGB-D image recognition extract
features based on linear based encoding. Moreover, these
methods need to be heavily tuned on specific datasets and
applications. Inevitably, this will lead to huge computational
burden as the model learning process repeats for each dataset
and thus not scalable for new incoming data which is crucial
for real-time robotics application. To overcome these draw-
backs, we employ a deep CNN model, VGG-f (Chatfield et al.
2014) which has been pre-trained and optimized on a large-
scale image dataset, ImageNet (Krizhevsky et al. 2012) for
feature extraction on all datasets.

3.1 Feature extraction and encoding

Let us assume a CNN model which consists of consecutive
modules of convolutional layer L(k, f, s, p), max-pooling
M P(k, s), local contrast normalization LCN, fully con-
nected layers F'C(n) and rectified linear unit (ReLU) RL,
where k x k is the receptive field size, f is the number of
filters, s denotes the stride of the convolution and p indi-
cates the spatial padding. The architecture of the model is
givenby: L(11,64,4,0) - RL - LCN — MP(3,2) —
L(5,256,1,2) - RL — LCN — MP@3,2) —
L(3,256,1,1) — RL — L(3,256,1,1) — RL —
L@3,256,1,1) - RL — MP@3,2) — FC4096) —
RL — FC(4096) — RLFC(1000). Many methods (Raza-
vian et al. 2014; Gupta et al. 2014; Schwarz et al. 2015)
only consider the fully connected CNN layers as features.
While these layers contain rich semantic information, they
do not preserve the localized image information and ignore
the convolutional layers. On the other hand, the convolu-



Autonomous Robots (2019) 43:1005-1022

1009

tional layers carry locally-activated features (Hariharan et al.
2015; Liu et al. 2015a). We formulate an effective framework
that extracts features from all convolutional layers hence
preserving the spatially-relevant information in the feature
representation. These features are then used alongside the
holistic fully connected layer features to obtain a global and
local visual representation.

Note that we perform the same feature extraction proce-
dure for all modalities (RGB and Depth). In this section, we
present the formulation of our proposed HP-CNN for only
one modality (e.g. RGB). Therefore, we drop the modality-
specific notation from our description. The feature maps
activation can be visualized as an i X j x n convolutional ten-
sor for each convolutional layer /) = (I(V ... (1)} Each
convolutional node can be expressed mathematically as

(0] _ -1 0)
a0 =0 | D kunen %@, 00 [ (D)

w,h,c

where b is a bias term and o(.) denotes the non-linear
function ReLU (rectified linear unit). The three-dimensional
w-by-h-by-c learned filter kernels are indicated by k such
that it convolves the c feature maps at previous layer (I — 1)
to produce n feature maps with dimension i-by-j at the
current layer /. The number of feature maps (i.e. the con-
volutional layer depth) in each convolutional layer is n!) =
{64, 256, 256, 256, 256} giving N = 1088 feature maps as
shown in Fig. 1.

We convert the feature maps into the HP-CNN repre-
sentation so that it encodes multi-scale information. To do
this, each convolutional feature map is first sub-sampled
using bilinear interpolation into three pyramid levels by sub-
sampling the spatial dimension (i, j) of each feature map in
all convolutional layers into pV = m x m, p® = 2m x 2m
and p® = 0.5m x 0.5m respectively. The sub-sampling
captures distinctive features of the convolutional layers at
multiple scales (Lowe 2004). The sub-samples are then con-
catenated along the depth dimension at each pyramid level
to produce a pyramid of Hypercube descriptors (see Fig. 1
for illustration). The hypercube at each pyramid level P is
given by

_[Lo ® (L)
Hp = [ap’n(l), ap’n(z), .. .ap,n(L)] , 2)
with H, € RP“*N wherek = 1,..., P.

This operation produces three different size Hypercubes.
To enhance the discriminative properties of the descriptors
and reduce the hypercube dimensionality spatial pyramid
max pooling (SPM; Bo et al. 2012) is performed. The hyper-
cube at each pyramid level is divided into two SPM levels.
The complete hypercube is used as one cell for SPM level
one, whereas each hypercube is partitioned into four cells

of equal size for the second SPM level. The pooled feature
vectors for each cell are then calculated through component-
wise maximum over all feature maps within that cell. Note
that the features extracted from each cell has dimension equal
to the depth (V) of the respective hypercube. Thus, five equal-
dimensional feature vectors are generated and concatenated
to create a single vector per pyramid level. Finally, max pool-
ing is done to combine the feature vectors of the three pyramid
levels and produce a compact discriminative representation
Fpe € RV of the pyramidal hypercube.

3.2 Depth map and point cloud encoding

RGB-D sensors capture two channels with complementary
and incongruous information. The objective of depth encod-
ing is to render the depth information as RGB in a domain
adaptive manner allowing knowledge transfer using the pre-
trained CNN model. We use the depth image and point cloud
representation together to embed richer depth information
and render two independent RGB images. Starting from a
single depth map channel d(«), where © = (x,y) and d
denotes pixel-wise depth value at the x-y location, we cal-
culate the vertical and horizontal derivatives

Gy =K, *xd(u)
’ 3)
Gy = K, xd(u),

where Ky and K, are the vertical and horizontal Prewitt ker-
nels respectively, and * is a 2D convolution operator. Next,
we compute the gradient magnitude and direction

Gn=,/G2+G?
" oo 4)

Gy = arctan(Gy, Gy).

A three-channel depth map is constructed by combining the
original depth map with the gradient magnitude and direction
as D(u) = [d(u), G, Go]. The motivation of this technique
is to encode the shape of the object with gradient direction
and sharp edges and boundaries through gradient magnitude.
Figure 2a shows the result of this encoding. We can see that
the combined channels capture richer shape information.
For point cloud p® = (gD pD Oy i e 1, ., P
encoding, we first project it onto a canonical view! and then
apply a gray colour map along the depth axis. This is followed
by a colour transfer algorithm (Welsh et al. 2002) which is
applied with the corresponding colour image to approximate
the RGB values at each pixel. This technique transfers the
chromatic information from the source image (RGB) to the
target image (gray-scale) by matching their luminance and

! In practice, we define the canonical view as the — 27.5° and 20° off
the azimuth and elevation angles.
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Fig. 2 Illustration of the proposed technique for CNN input encoding
a depth image and b point cloud object-centric encoding before feature
extraction

texture. The main advantage of this technique over existing
encoding methods (Schwarz et al. 2015; Gupta et al. 2014) is
that the colourization scheme is closely guided by the RGB
images and is fully automatic. Figure 2b shows the effect of
this technique. We can see that the resulting image closely
resembles the corresponding RGB channel with the addi-
tional depth and shape information.

4 Feature fusion and inference with extreme
learning machines

Existing methods that use CNN based features either directly
use the feature vectors (Schwarz et al. 2015; Razavian et al.
2014) or use simple concatenation of feature vectors from
convolution layers and fully connected neurons, F s (Hariha-
ranetal. 2015; Liu et al. 2015a) as input to the classifiers (e.g.
support vector machines). Such methods are straight-forward
in implementation however, simple concatenation results in
long feature vectors which increase the computational com-
plexity of classification, especially when used with powerful
classifiers with non-linear kernels (Huang et al. 2006). More-
over, since these features encode different modalities, the
classifiers may need to make difficult decisions to weigh the
relative importance of the features.

@ Springer

Depth

Fpe BT
Point Cloud

Fig.3 Illustration of the proposed late fusion scheme to combine hyper-
cube pyramid descriptor F,. and the fully connected neurons F. for
the combined RGB-D channels. @ means concatenation

For robotic applications, the input to classifiers must be
compact without sacrificing the discriminative properties of
the features. We achieve this by employing the extreme learn-
ing machine classifier (Huang et al. 2006, 2012) and use
ELM not only for multi-class object classification, but also as
the feature fusion engine that combines the HP-CNN features
Fy¢ with the fully connected layer Fz.. We use early and late
fusion strategies to identify the most accurate classification
scheme. Let F, = {£”, 1@}, e RP,i =1,2,..., N repre-
sent the input feature vectors to the classifier, where N is the
number of RGB-D images with labels ¢. In early fusion, F,
is the concatenation of Fjy. and Fy. (i.e. Fe = [Fpe, Frel).
ELM maps the feature vectors to the hidden layer to output /2
= (XN, Win £ + bin) € R¥, where o/(.), Wi, € RE*D
and b;, are the piecewise sigmoid activation, randomized
orthogonal input weight matrix and the bias vector, respec-
tively. The hidden variables are then mapped to the target
labels, parametrized by the output weight W, and bias b,
giving the output variables y = o (31 | W,t® + b,)B.

The only parameter to be tuned is 8 which is achieved by
optimizing a convex objective function of ELM that simul-
taneously minimizes the norm of the output weight and the
loss between the actual output and the target labels as

min =—|IBl% + B—TI5. 5
ELM = 5 Fts 5

Equation 5 has a closed form solution using the linear least
square, 8 = KWiT, where h' is the generalized Moore-Penrose
pseudo-inverse of 4. We compute &' as hT = IA~! +
K= hT or bt = hT (A" + hiT)~ 1, using an orthogonal
projection method with the condition that 47 / is non-singular
(if H > N)orhh” is non-singular (if H < N) (Huang et al.
2012). Here, 1 is an identity matrix. The coefficient A is used
for regularization and is chosen with cross validation such
that it enhances the generalization of the ELM by acting as
a solution stabilizer against overfitting (Huang et al. 2012).
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Inlate fusion, we give Fj. and F'r. independently as inputs
to the ELM classifiers and optimize Eq. 5. The ELM outputs
are the vectors of class probabilities, y,. and yy., for the
HP-CNN and fully connected layer respectively. These vec-
tores are concatenated (i.e. Fe = [ync, yre]) and used as
input to another ELM that performs the final classification.
This approach has the advantages that the feature dimension
is reduced to only double the number of classes before the
final classification and the learning/inference time of ELM is
substantially reduced. Figure 3 illustrates the proposed late
fusion method.

5 Multi-view 3D object pose model

To further highlight the importance of transfer learning and
domain adaptation in RGB-D image recognition, we propose
a multi-view 3D object pose (M3DOP) model to specifically
fine-tune the CNN model of VGG-f (Chatfield et al. 2014) to
the target datasets. However as mentioned earlier, the train-
ing data for depth images are deficient in terms of number of
samples while manually acquiring and annotating the data are
expensive. Additionally, RGB-D cameras only provide low
resolution depth images, which are represented by 2.5D data
and hence need to be carefully post-processed to remove the
noise. To surmount this obstacle, we employ 3D CAD mod-
els which are freely available on the internet to render and
generate synthetic RGB and depth images. These synthetic
images are then used for fine-tuning the pre-trained RGB
model for both the depth and colour channels. We intend to
make the M3DOP model and rendered RGB-D dataset pub-
licly available for the benefit of the research community.

5.1 Rendering synthetic multi-view depth images

To this end, we use the newly introduced dataset of Mod-
elNet40 (Wu et al. 2015) which consists of 3983 full 3D
polygonal meshes organized into 40 categories. The training
and validation split of datasets follows the procedure of Wu
et al. (2015) with balanced distribution among mesh cate-
gories i.e. for each category, 80 meshes are used for training
and 20 meshes for validation. In the case of insufficient num-
ber of meshes such as in the category bowl! and cup, then 20
meshes are selected for validation while the rest are used
for training. The object meshes are rendered under a per-
spective projection. The reflection model of Phong (1975)
is used and a random colour palette is applied to generate
the RGB images while the depth values are determined by
taking the distance from the facets of polygon meshes to the
virtual cameras. Shapes of the objects are fit into the viewing
volume by uniform scaling. It is worth noting that the objects
contained in this dataset have significantly different distribu-
tion to those in the evaluation datasets in Sect. 6. However, as

Fig. 4 Tllustration of the synthetic data generation for the learning of
multi-view 3D object pose model. Each point on the sphere corresponds
to the virtual cameras placement looking towards the centre of the 3D
CAD object mesh. The cameras that lie on the same horizontal ellipsoid
are the multi-view cameras with the same elevation angle

we will demonstrate experimentally, the model generalizes
well to different datasets and applications.

To generate multi-view RGB-D images, we place several
virtual cameras on a globe enclosing the object of interest (see
Fig. 4). With the assumption that the object is always in an
upright orientation along z-axis, we employ virtual cameras
at three different elevation angles off the x-axis (30°, 0° and
— 30°). The setting of the camera positions is chosen to emu-
late the vision of the robot where the robot needs to deal
with different viewpoints of the objects in real world scenes.
Moreover, multi-view representation of the polygon meshes
enables us to learn a view-invariant model. Note that the same
flexibility of rendering dynamically from negative elevation
angle is limited in manual data acquisition [such as in the
work of Lai et al. (2011), Browatzki et al. (2011)], whereas
the viewpoints can be arbitrary using our method.

Then, we place the cameras along the ellipsoid at every
30° step size, making it a total of 36 views per object mesh
(12 views per elevation angle). Besides providing full 3D
representation of an object, this rendering technique has also
important benefits over manually gathered 3D datasets using
RGB-D cameras (Lai et al. 2011; Browatzki et al. 2011;
Silberman and Fergus 2011; Song etal. 2015) in terms of arbi-
trary viewpoint capturing, efficiency and comes at absolutely
zero operational cost. Moreover, it is becoming increasingly
intricate to capture multi-view RGB-D images of huge and
enormous items such as desks, bookshelves and wardrobe
using low-cost Kinect camera. The final dataset consists of
3983 x 36 = 143, 388 RGB-D images in total. Samples of
the 3D meshes with corresponding rendered depth images
are given in Fig. 5.
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Fig.5 Samples of the multi-view synthetic depth images rendered from
a polygon meshes in ModelNet40 (Su et al. 2015). The synthetic data
are generated from three different elevation angles. b 30°, ¢ 0° and d

5.2 Model architecture and learning

The learning process of the M3DOP model is performed by
initializing the network using the VGG-f model and fine-
tuning on the rendered RGB and depth images. Note that
fine-tuning is done separately for RGB and depth images.
We use the same encoding technique of depth images before
feeding those images as input to our model as detailed in
Sect. 3.2. Specifically, the network architecture follows the
architecture of VGG-f with the exception of the last fully con-
nected layer where we replace the layer with a new randomly
initialized vector of dimension N, where N corresponds
the number of categories to be classified. In order to pre-
vent overfitting on the deep network, we also add a dropout
layer (Srivastava et al. 2014) between fully connected layers
(first fully connected, penultimate, and the final layer).

For the learning, a softmax regressor is added at the end
of the network which is given by:

N
1 i .
arg min 3 £ (g(x})": 0p): 0p). 1) . ©)
Op i—
j=1

where 6p = {Wp,bp} are the parameters of the CNN
and L (.) denotes the conditional log-likelihood softmax
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— 30°. The depth images with corresponding RGB images are then used
to train our view-invariant M3DOP model

loss function. During learning, standard stochastic gradi-
ent descent with backpropagation is used to optimize the
objective function and update the model’s parameters. We
set relatively small learning rates of 0.00001 and 0.0001
for global and final fully connected layer respectively. The
momentum is set to 0.9 and the weight decay is 0.0005 as
suggested by Chatfield et al. (2014). We train the entire net-
work for 67 and 31 epochs to learn the CNN models of depth
and RGB images respectively. We let the algorithm run until
the validation curve converges and stop the learning process
when the curve stabilizes. The efficiency of the learning pro-
cess is ensured by running the algorithm on a Tesla K40c
graphics card. Each epoch takes approximately 30 min to
complete. The training data are augmented using horizontal
mirroring with 0.5 probability and normalized using the mean
image of training data in ImageNet dataset (Deng et al. 2009).

6 Experimental setup and datasets

We extensively evaluated the proposed methods on bench-
mark RGB-D object recognition datasets including the
Washington RGB-D (WRGB-D; Lai et al. 2011) and 2D3D
(Browatzki et al. 2011) datasets. We also evaluated the pro-
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posed methods for cross domain adaptation by performing
experiments on two challenging visual scene recognition
datasets including SUN RGB-D Scene Dataset (Song et al.
2015) and NYU vl Indoor Scene Dataset (Silberman and
Fergus 2011). The implementation of the proposed algo-
rithm based on the pre-trained CNN model (Sect. 3) was
performed using the MatConvNet solver (Vedaldi and Lenc
2014; Vedaldi and Fulkerson 2010). As a baseline represen-
tation, we extract the channel-specific first fully connected
neurons (fcg) and concatenate the vectors as a final RGB-
D representation prior categorization using ELM classifiers.
Note that we only use the point cloud for object recog-
nition as the canonical view of the point cloud generated
from the depth images in scene recognition datasets is ill-
defined. However, without any point cloud data, the proposed
algorithm outperforms existing methods with a significant
improvement as we will experimentally show in the next
section.

The parameters of the ELM classifier including the num-
ber of hidden neurons H and regularization coefficient A
were determined by using grid search technique and cross-
validated on the training set. Next, we will briefly describe
the datasets with corresponding experimental protocols used
for evaluation.

WRGB-D dataset contains RGB-D images of 300 house-
hold objects organized into 51 categories. Each image was
captured using an ASUS Xtion Pro Live camera on a revolv-
ing turntable from three elevation angles (30°, 45° and 60°).
We conducted two experiments following the experimental
protocol of Lai et al. (2011), namely object category recogni-
tion and object instance recognition. In category recognition,
a “leave-one-instance-out” procedure is adopted and the
accuracy is averaged over ten trials. We use the same training-
testing splits and the cropped images as suggested by Lai
et al. (2011) to ensure a fair comparison with other meth-
ods. For instance recognition, the images of objects captured
at 45° were used as testing while remaining are used for
training.

2D3D object dataset has relatively fewer images. It has 163
objects organized into 18 categories. The dataset consists
of highly textured common objects such as drink cartons
and computer monitors. We use the experimental protocol
defined by Browatzki et al. (2011) for this dataset to ensure a
fair comparison with existing state-of-the-art methods. The
protocol requires the fork, knife and spoon classes to be
combined into one class of silverware and the phone and
perforator classes to be excluded due to their small sample
numbers. This brings the final number of classes to 14 with
156 object instances for category recognition. For evalua-

2 Available: http://rgbd-dataset.cs.washington.edu/.

tion, six instances per class are randomly chosen for training
and the remaining instances are used for validation. Only 18
RGB-D frames per instance are randomly selected for both
sets. Except for categories that have less than six instances
(e.g. scissors), in total in which case we use at least one
instance is used for testing.

SUN RGB-D scene dataset (Song et al. 2015) is a benchmark
suite for scene understanding and the most comprehensive
and challenging RGB-D scene dataset to date. We adopted
the same training/testing split for scene classification as sug-
gested by the dataset authors. Specifically, the evaluation
involves 19 scene/place categories which contain more than
80 images in each category. The final number of images for
training and testing sets are 4845 and 4659 RGB-D images
respectively. Complex indoor scenes with various degrees
of object clutter and small inter-class variability make this
dataset substantially challenging for recognition.

NYU vl indoor scene dataset contains 2284 samples from
seven scene classes. The experimental setup by Silberman
and Fergus (2011) is used. In particular, we exclude the class
cafe for its low number of samples and split the datasets
into disjoint training/testing sets of equal size. Care has been
taken to ensure that the frames captured from the same scene
appear either in the training, or in the test set. In this paper,
we do not use the ground-truth segmentation labels provided
with the dataset and rely only on the categorical label of each
scene frame for evaluation.

7 Model ablation analysis

We analyse the contribution of individual modules of the
proposed method towards recognition accuracy to find the
best-performing representation. We compare the accuracy
with the baseline of our model which is the first fully con-
nected neurons (fcg € R*%0) after the non-linear transfor-
mation by rectified linear units (ReLLU). This representation
has shown to encode highly discriminative features from a
CNN model (Chatfield et al. 2014; Razavian et al. 2014).
Next, we compare the accuracy of the proposed convolu-
tional hypercube pyramid (HP-CNN) with fcg and the fusion
techniques used to combine both features, denoted by sim-
ple concatenation (early fusion) and late fusion as discussed
in Sect. 4. For multi-channel recognition task, we take the
concatenation of the individual channel features as feature
representation without performing any expensive dimension-
ality reduction method such as principal component analysis
(PCA). In addition, the same set of experiments is conducted
using the features extracted from the multi-view 3D object
pose (M3DOP) model as discussed in Sect. 5.
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Table 1 Effects of depth images augmentation with point cloud images
towards categorization accuracy for object categorization in 2D3D
dataset (Browatzki et al. 2011)

Features Depth (D) Point Cloud (P) D + P

Washington RGB-D

fce + HP-CNN (late fusion) 79.5 £2.6 70.3 £2.3 85.0£2.1
2D3D
fce + HP-CNN (late fusion) 90.3 84.8 92.9

7.1 Effects of augmenting depth images with point
cloud images

Firstly, let us examine the effects and contributions of aug-
menting depth images and point cloud images as detailed in
Sect. 3.2 towards categorization accuracy. We simply aug-
ment the final late fusion features extracted from both depth
and point cloud images by concatenating them as a long vec-
tor prior classification. Table 1 tabulates the performance of
object category recognition on WRGB-D and 2D3D dataset.
Evidently, the accuracy consistently increases across these
datasets when these features are combined together.

In WRGB-D, using HP-CNN representation with the late
fusion scheme, the accuracy of using only the depth images
or point clouds was 79.5 and 70.3% respectively. How-
ever, when both channels were fused together, the accuracy
increases to 85% as depicted in Table 1. Similarly, this aug-
mentation step accounts to approximately 2.6% accuracy
increment in 2D3D dataset. This indicates that depth images
and point clouds contain complementary information and
augment each other to provide richer 3D information result-
ing in improved recognition performance.

7.2 Tuning optimal ELM parameters

In this section, we discuss the tuning of ELM classifier’s
parameters to produce optimal performance for categoriza-
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tion. Particularly, we would want to examine the effects of
different settings of hyper-parameters including the num-
ber of hidden neurons, H and regularization coefficient, A
towards classification accuracy of fully connected layer acti-
vations, hypercube, and late fusion representation. Figure 6
shows the accuracy recorded for each point in a grid search
scheme for RGB scene categorization task in SUN RGB-D
dataset.

The procedure of our parameter tuning proceeds as fol-
lows. Firstly, we run a grid search to find an optimal
combination of H and A for fully connected layer activation.
Next, the same procedure is conducted for hypercube repre-
sentation. Using these hyper-parameters, we then run a grid
search to find an optimal H and X for the late fusion represen-
tation. As shown in Fig. 6, for all feature representation, the
accuracy peaks at overcomplete representation i.e. number
of hidden neurons is larger than the number of input neu-
rons. This larger number of features gives the classifier many
non-linear projections of the input data. Hence, in contrast
to simple linear projections which have limited representa-
tional power, non-linear projections can make data closer
to linearly separable and therefore easier to classify (Coates
et al. 2011). As for the regularization coefficient A, we find
that the accuracy peaks at values of 1e2 and 1e3 for fully con-
nected layer activations and hypercube, respectively. Again,
A is an important element in ELM for high generalization
capability and avoiding overfitting (Huang et al. 2012).

7.3 RGB-D object recognition

As shown in Table 2 (2D3D column, rows without the high-
lighter) and Table 3, the combination of our HP-CNN and
the fully connected layer activations (fcg) with the late fusion
technique consistently outperforms the other three alternative
modules by a significant margin for all evaluation datasets.
This is mainly credited to the fusion technique which uses the
class probability distributions obtained from different feature
representations as the new feature vectors for classification.

Accuracy

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 100 200 300 400 500 600 700 800 900 1000

Number of Hidden Neurons, H

Number of Hidden Neurons, H
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Fig. 6 Categorization accuracy using fully connected layer activations, hypercube and late fusion representation with different ELM parameters.

a Fully connected layer, b hypercube and c¢ late fusion
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Table 2 Comparison of recognition accuracy (in %) in 2D3D object
dataset (Browatzki et al. 2011), SUN RGB-D scene dataset (Song et al.
2015) and NYU vl indoor scene dataset (Silberman and Fergus 2011)

of the baseline method (fce), the proposed hypercube pyramid (HP-
CNN), and the HP-CNN extracted from the multi-view 3D object pose
(M3DOP) model (HP-CNN-T) with various fusion methods

2D3D SUN RGB-D NYU vl
Features RGB D RGB-D RGB D RGB-D RGB D RGB-D
Baseline
fce 87.4 88.4 90.6 32.0 21.1 33.3 73.1 52.1 71.6
fcg (extracted from M3DOP) 92.5 94.2 95.8 33.1 26.4 34.9 72.3 62.7 77.6
Hypercube Pyramid
HP-CNN 91.6 88.9 92.3 30.3 23.9 33.7 67.8 51.3 68.3
HP-CNN-T 92.4 94.9 94.5 31.7 24.3 33.8 69.9 56.4 73.8
Early Fusion (Concatenation)
fce + HP-CNN 90.8 88.9 92.2 31.6 22.8 32.0 72.4 52.8 72.1
fcg + HP-CNN-T 91.8 95.2 94.8 31.6 25.0 32.3 74.1 64.7 77.2
Late Fusion With ELM
fce + HP-CNN 92.0 92.9 94.7 36.0 25.5 40.5 75.1 56.6 74.3
fce + HP-CNN-T 94.4 96.2 97.3 38.8 28.5 42.2 77.5 66.3 79.4

Maximum values are given in bold

Table 3 Model ablation results in terms of classification accuracy (in
%) of the proposed method for object and instance recognition in Wash-
ington RGB-D dataset (Lai et al. 2011) (the reported accuracy is the
average accuracy over ten splits)

Task Category Recognition
Features RGB D RGB-D
fcg 85.5+2.1 79.6+1.8 87.6t1.7
HP-CNN 85.142.0 77.1£2.2 85.04+1.9
fes + HP-CNN o5 0410 812421 87.9+1.8
(Early Fusion)

fee + HP_CNN 87.6+2.2 85.0+2.1 91.1+1.4
(Late Fusion)

feg + HP-CNN-T g5 0417 848422 90.241.5

(Late Fusion)

Task Instance Recognition
Features RGB D RGB-D
fce 95.1 48.0 94.6
HP-CNN 94.0 39.1 91.5
fce + HP-CNN

(Early Fusion) 94.8 28.1 86.7
fcg + HP-CNN

(v Biasiom) 95.5 50.2 97.2
feg + HP-CNN-T g0 50.3 96.6

(Late Fusion)

Maximum values are given in bold

The testing time for late fusion features is only 6.3 x 107> s
for one image using MATLAB on a 64-bit, 2.5 GHz machine.
The accuracies of fcg and HP-CNN are comparable for all
tasks, which depicts that the earlier convolutional layers acti-
vations also contain strong semantic cues, which can be used

as a powerful representation for recognition tasks given an
appropriate encoding scheme. The results also show that con-
ventional fusion schemes using simple concatenation (early
fusion) are less effective for combining the features origi-
nating from different sources. This is probably because of
the difficulty faced by the classifier in suitably weighing the
inputs that carry different sets of information.

For category recognition task in 2D3D dataset, note that
the HP-CNN consistently outperforms fcg for RGB, depth
and combined channels. In a deep network like CNN, it has
been shown that earlier layers capture the low-level visual
features such as oriented edges, lines and textures while more
abstraction is modelled going deeper into the network (Zeiler
and Fergus 2014; Bengio et al. 2013, 2007; Coates et al.
2011). As this dataset contains various highly textured
objects, earlier convolutional layer activation encoded using
HP-CNN is more representative than the fcg features. There-
fore, we conjecture that any visual recognition task involving
subtle inter-class discrimination should consider encoding
earlier layers’ activations of the deep network in the repre-
sentation.

For instance recognition in WRGB-D dataset, we observe
an interesting pattern in the classification accuracy where
the performance severely drops when the HP-CNN repre-
sentation is combined with the fcg using early fusion for
depth-only and RGB-D recognition tasks. This trend shows
that while the early fusion representation is powerful for cate-
gorical classification, it is less effective for more fine-grained
tasks such as instance recognition. Nevertheless, the accuracy
increases when the late fusion scheme is used to combine the
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features, showing that the two representations contain com-
plementary information.

7.4 RGB-D scene recognition

The results of model ablation on the RGB-D scene recogni-
tion task are tabulated in Table 2 (SUN RGB-D and NYU
v1 columns, rows without the highlighter). Remarkably, the
same classification accuracy pattern is observed in this task
as in the object recognition, although the datasets have signif-
icantly different distributions from the ImageNet (Deng et al.
2009) where the CNN model was trained on. Therefore, the
transfer learning of a well-trained CNN model across appli-
cations, which is now commonplace in RGB based image
recognition (Razavian et al. 2014), is also feasible in the
context of 3D image recognition.

The simple concatenation of the HP-CNN features and
fce consistently gives slight degradation of performance in
most channel-specific tasks. Besides the problem of curse of
dimensionality which is a major source of overfitting (Yang
et al. 2009; Yang and Ramanan 2015), both features rep-
resent different sets of information in the context of scene
recognition. For example, the globally designed fce fea-
ture is more representative of scenes with a high degree of
spatial envelope (Torralba et al. 2003), while less discrim-
inative for scenes with object clutter and distributed scene
elements (Yang and Ramanan 2015) which can be more
appropriately captured by the lower layers of CNN. Nonethe-
less, our proposal of projecting the features onto a supervised
space in the late fusion scheme mitigates this problem which
is reflected by the improved classification accuracy on all
subtasks.

7.5 Effect of domain adaptation using the proposed
multi-view 3D object pose model (WV3DOP)

In this section, we compare the performance of features
extracted from the CNN model that is fine-tuned using the
technique discussed in Sect. 5 and the features extracted from
the pre-trained CNN using the same experimental setup. The
model for depth images is trained on the rendered depth
images from ModelNet40 while we include the training
images from 2D3D, SUNRGB-D and NYU v1 datasets to aid
the learning of the model for RGB images. This results in the
dimension of final fully connected layer of N =40 and N =
40+14+64-19 = 79 for depth and RGB model, respectively.

As depicted in Table 2 (rows with the highlighter), the
performance of fcg significantly boosts for the majority of
tasks as a result of fine-tuning. However, we observe that
there is little performance gain for HP-CNN after fine-tuning
in the scene recognition datasets. In some cases, the early
fusion representation degrades after the fine-tuning process.
This result can be explained by referring to the learning rates
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used during learning the model. As the learning rate is rela-
tively small for convolutional layers compared to the fully
connected layers, the evolution of the model occurs very
slowly and requires a lot of training epochs to converge. On
the other hand, using a small global learning rate is crucial
in our recognition task to avoid overshooting the gradient-
based optimization process (Bengio 2009; Hinton et al. 2006;
Hinton 2012) as the distribution of the target dataset is signif-
icantly contrary to the dataset the model was initialized with.

For all cases and datasets, projecting the features onto
a supervised space before classification using late fusion
scheme consistently gives highest performance compared to
other modules. Comparing the two late fusion representa-
tions (the last two rows), it is clear that fine-tuning incredibly
helps the recognition tasks. Interestingly, the significant per-
formance gains are recorded for the depth-only recognition
in scene datasets (21.1-26.4 % for SUN RGB-D and 52.1-
62.7 % for NYU vl). Since there is no training data used
from these datasets for learning the M3DOP model for depth
images, the results open up possibilities of domain adapta-
tion and transfer learning not only across modalities, but also
across different applications.

Itis worthy to note that using M3DOP model to extract the
features and perform classification task improves the recog-
nition accuracy for all testing datasets, except for WRGB-D
dataset. The main reason is that the number of categories
in ModelNet is relatively lower than WRGB-D dataset (40
vs 51). While a model learned from a dataset with larger
number of categories can generalize to other datasets with
fewer categories, the inverse is not true (Azizpour et al. 2016).
Increasing the number of categories for model learning might
improve the accuracy. However, we leave this for further
investigation in the future.

8 Comparative analysis against
state-of-the-art methods

8.1 Results on Washington RGB-D object dataset

To compare the accuracy of our algorithm with the state-
of-the-art methods, we benchmark HP-CNN against ten
related algorithms including EMK-SIFT (Lai et al. 2011),
depth Kernel (Bo et al. 2011), CNN-RNN (Socher et al.
2012), CKM (Blum et al. 2012), HMP (Bo et al. 2012),
semi-supervised learning (SSL; Cheng et al. 2014), subset-
based deep learning (subset-RNN; Bai et al. 2015), CNN-
colourized (Schwarz et al. 2015), CaRFs (Asif et al. 2015b)
and LDELM (Zaki et al. 2015). The results are included in
Table 4. All results in this section are taken from the original
publications.

The results depict the superiority of our proposed method
which constitutes state-of-the-art for several subtasks for
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Table 4 Performance S . .
comparison in terms of Recognition type Category recognition Instance recognition
recognition accuracy (in %) of Method RGB D RGB-D RGB D RGB-D
the proposed hypercube . ]
pyramids with state-of-the-art EMK-SIFT ICRA 11 745+3.1 647+£22 838+35 60.7 462 748
methods on Washington RGB-D Depth Kernel # IROS ’11 77.7+£19 788+£2.7 862%2.1 786 543 845
object dataset (Lai et al. 2011). CNN-RNN NIPS *12 808442 789+38 868+33 - - -
The accuracy is reported is an ADD 410 4
average over 10 trials CKM ICR B - 86. 3 - B 2.
HMP *# ISER ’13 824+21 812+23 875£29 921 517 928
SSL ICPR ’14 81.8+19 77714 872+11 - - -
subset-RNN Neurocomp.’15 82.8+34 81.8+£2.6 885+3.1 - - -
CNN-colourized ICRA 15 83.1£20 - 89.4+13 920 455 941
CaRFs ? ICRA’15 - - 88.1+24 - - -
LDELM * DICTA 15 78.6+1.8 81.6+£0.7 883+1.6 928 552 935
HP-CNN # this work 87.6+22 85.0x21 911+14 955 502 972

Maximum values are given in bold

The methods *the experiments were conducted using the same training/testing splits
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Fig.7 Confusion matrix for one of the object categorization trials using
the proposed hypercube pyramid representation and late fusion scheme
on the Washington RGB-D object dataset (Lai et al. 2011). This figure
is best viewed with magnification

WRGB-D. For object category recognition, our method
outperforms other methods by a significant margin. Other
methods which extract features from additional derivative
channels such as gradient channels (Zaki et al. 2015), sur-
face normals (Bo et al. 2012) and point cloud surfels (Asif
et al. 2015b) do not perform as good as our three-channel
feature extraction. Additionally, our choice of features sub-
stantially reduces the processing time needed to extract them
from depth and point cloud channels.

Our method also outperforms other methods for channel-
specific category recognition. The accuracy of our RGB-only
recognition improves state-of-the-art by 4.5%, which can be
attributed to our proposed HP-CNN representation. The sig-

nificant performance improvement for depth-only recogni-
tionis an interesting result. It shows that the features extracted
from a pre-trained CNN on RGB-only images were powerful
enough to achieve high accuracy even when the underlying
data was coming from a different modality. Hence, using
appropriate encoding and rendering techniques, such as our
proposed depth and point cloud encoding (Sect. 3.2), seam-
less transfer of knowledge between modalities is possible.

Our technique also outperforms other methods for instance
recognition by a large margin, except for depth-only recogni-
tion in which LDELM (Zaki et al. 2015) descriptor wins with
a reported accuracy of 55.2%. While this can be attributed
to the heavily tuned deep networks from different derivative
depth channels, the accuracy of LDELM is largely inferior
for RGB and RGB-D recognition compared to our proposed
algorithm. We observe that for instance recognition, colour
information provides better discrimination across intra-class
instances while they generally share very similar shapes (e.g.
balls are spherical, soda cans are cylindrical). Nonetheless,
this problem can be effectively mitigated by considering
colour and depth features in unison.

Figure 7 visualizes the confusion matrix for one of the
category recognition trials on the WRGB-D dataset. The
strongest off-diagonal element shows the misclassification of
mushroom which is labelled as garlic. As depicted in Fig. 8a,
this is due to both instances having similar appearance and
shape which makes the recognition task difficult even for
human experts. In addition, the category mushroom has a
very low number of examples in the dataset, highlighting
class imbalance problem which makes it hard for the classi-
fier to construct a good model for inference. We conjecture
that the performance can be further improved by perform-
ing data augmentation techniques such as jittering (Chatfield
et al. 2014; Razavian et al. 2014) to increase the number
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Fig.8 Selected outliers for a WRGB-D (mushroom misclassified as garlic) b 2D3D (drink carton misclassified as can) ¢ SUN RGB-D (bedroom
misclassified as living room) and d NYU v1 (bedroom misclassified as bookstore)

Table5 Performance comparison in terms of recognition accuracy (%)
of the proposed hypercube pyramid (HP-CNN) with state-of-the-art
methods on 2D3D object dataset (Browatzki et al. 2011)

Methods RGB D RGB-D
2D+3D ICCVW 11 66.6 74.6 82.8
HMP ISER ’13 86.3 87.6 91.0
RICA NIPS ’11 85.1 87.3 91.5
RZICA ACCV ’14 87.9 89.2 92.7
Subset-RNN Neurocomp. 15 88.0 90.2 92.8
LDELM DICTA ’15 90.3 91.6 94.0
HP-CNN ICRA’16 92.0 92.9 94.7
HP-CNN-T This work 94.4 96.2 97.3

Maximum values are given in bold

of training samples and the accuracy is taken as an average
prediction from all augmented images.

8.2 Results on 2D3D object dataset

For this dataset, we benchmark our HP-CNN against sev-
eral state-of-the-art methods; combination of hand-crafted
features (2D + 3D), HMP, reconstruction independent com-
ponent analysis (RICA) (Le et al. 2011), R?ICA, subset-
RNN (Bai et al. 2015) and LDELM (Zaki et al. 2015).
The depiction of comparison to other existing methods are
reported in Table 5. The proposed HP-CNN outperforms all
state-of-the-art methods for all subtasks with a considerable
margin. The closest competitors, LDELM and subset-RNN,
which are based on expensive channel-wise learning and sub-
set generation procedure, lag 3.3 and 4.5 % in performance
from our proposed HP-CNN. We credit this result mainly to
the effectiveness of the depth and point cloud encoding which
is also reflected in the higher accuracy achieved by the depth-
only recognition compared to the RGB-only recognition.
Although the depth images captured using low-cost
kinect-like sensors in this dataset are extremely noisy, with a
lot of missing points and holes for reflective objects (e.g. sil-
verware), the HP-CNN features extracted using the M3DOP
model, which is learned from rendered 3D CAD models,
successfully recognizes the object categories. Thus, we can
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adapt this technique of learning a powerful deep network
from clean 3D CAD data for the purpose of designing robust
real-time visual recognition capabilities which are essential
for a robot’s online learning and recognition. A sample off-
diagonal entry of confusion matrix (Fig. 9a) is depicted in
Fig. 8b for qualitative analysis of a misclassification case for
this dataset.

8.3 Results on sun RGB-D scene dataset

As this dataset was just recently introduced, we compare
the proposed HP-CNN against the methods introduced by
dataset creators including the scene-specific hand-crafted
Gist descriptors (Torralba et al. 2003) and places (Zhou et al.
2014) which uses the features extracted from a CNN learned
from a large-scale scene dataset. We also include the method
of semantic regularized scene classifier (SS-CNN) (Liao et al.
2016) which is based on a CNN fine-tuned using scene
datasets. As shown in Table 6, our HP-CNN outperforms
other methods with a considerable margin, although the
model does not implicitly use scene-specific data for learn-
ing, except a small portion in learning the M3DOP model for
RGB images. Figure 9b shows the confusion matrix for this
dataset using the fine-tuned HP-CNN. Our method still pro-
duces strong diagonal entries despite the challenging nature
of the dataset, where some scene images are not entirely rep-
resentative of their original scene classe and appear extremely
similar to some other class, as depicted in Fig. 8c.

8.4 Results on NYU v1 indoor scene dataset

For NYU vl Dataset, we compare our HP-CNN with recent
approaches including bag-of-word using SIFT descriptors
(BoW-SIFT; Silberman and Fergus 2011), spatial pyramid
matching (SPM; Lazebnik et al. 2006), sparse-coding based
SPM (ScSPM; Yang et al. 2009), RICA (Le et al. 2011) and
RZICA (Jhuo et al. 2014). Our HP-CNN significantly out-
performs all methods for all tasks as illustrated in Table 7.
The proposed HP-CNN outperforms the deep learning based
descriptor RZICA—which currently records the highest accu-
racy for this dataset to the best of our knowledge-by a
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Table 6 Performance comparison in terms of recognition accuracy (%)
of the proposed hypercube pyramid (HP-CNN) with state-of-the-art
methods on SUN RGB-D Dataset (Song et al. 2015)

Methods RGB D RGB-D
Gist+RSVM CVPR 15 19.7 20.1 23.0
Places+LSVM CVPR 15 35.6 222 37.2
Places +RSVM CVPR ’15 38.1 27.7 39.0
SS-CNN ICRA’16 36.1 - 41.3
HP-CNN ICRA’16 36.0 25.5 40.5
HP-CNN-T This work 38.8 28.5 42.2

Maximum values are given in bold

Table7 Performance comparison in terms of recognition accuracy (%)
of the proposed hypercube pyramid (HP-CNN) with state-of-the-art
methods on NYU vl indoor scene dataset (Silberman and Fergus 2011)

Methods RGB D RGB-D
BoW-SIFT ICCVW 11 552 48.0 60.1
SPM CVPR 06 52.8 532 63.4
RICA NIPS "11 74.5 64.7 74.5
ScSPM CVPR 09 71.6 64.5 73.1
RZICA ACCV 14 75.9 65.8 76.2
HP-CNN ICRA ’16 75.1 56.6 74.3
HP-CNN-T This work 71.5 66.3 79.4

Maximum values are given in bold

Table 8 Average computation time (in s) of several modules of our
proposed framework for instance recognition task in WRGB-D (Lai
et al. 2011). Note that only the time taken to resample one pyramid
level is reported as this extraction step is highly parallel

Module Time (s)
Feed forward 0.0327
Feature map resampling 0.1793
Maxpooling in four quadrants 0.008
Classification 0.0011
Total 0.2211

significant margin, i.e. an accuracy improvement of up to
3.2%. Similar case holds for the channel-specific recogni-
tion tasks, especially for depth-only recognition although
RZICA explicitly learns the deep model from depth patches.
In contrast, our method transfers the knowledge of a model
explicitly learned from the RGB domain to the domain of
depth images, albeit including the fine-tuning process in
M3DOP for improved accuracy. The confusion matrix for
the dataset using the fine-tuned HP-CNN is shown in Figs. 9¢
and 8d depicts a sample misclassification.

@ Springer
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8.5 Computational cost

Our technique can be employed in real-time applications as
it does not involve complex feature computation or computa-
tionally expensive testing phase. Our technique outperforms
the current RGB-D object and scene categorization methods
on the WRGB-D (Lai et al. 2011), 2D3D (Browatzki et al.
2011), SUN RGB-D (Song et al. 2015) and NYU v1 (Silber-
man and Fergus 2011) datasets by learning a view-invariant
model using an independent training dataset without super-
vision from the target datasets. Therefore, in comparison to
existing methods, the proposed HP-CNN-T is more general
and can be used in online object and scene recognition sys-
tems. More precisely, the cost of adding a new object or scene
class using our approach in an online system equals to the
cost to train an ELM classifier.

As shown in Table 8, our method takes only 0.2211 s to
classify one testing image or approximately 13 frames per
second on a 3.4 GHz machine with 16 GB RAM. Convo-
lutional feature map resampling consumes the majority of
computation burden as each map needs to be resampled into
the same dimension. This can be improved by employing ten-
sor based resizing methods such as the technique based on 3D
Discrete Cosine Transform (DCT; Uzair et al. 2015). Overall
computational complexity can be further reduced by run-
ning the algorithm on a multi-threading machine and GPU.
Moreover, as the algorithm was implemented in Matlab, we
conjecture that using more efficient platforms such as C++
and OpenCV could further speed up the execution of each
module in the pipeline.

9 Conclusions

We proposed a viewpoint invariant method for multi-modal
object and scene recognition based on deep learning frame-
work. We presented a powerful feature representation coined
Hypercube Pyramid (HP-CNN) that encodes multi-scale
features from all convolutional layers of a CNN. We also
proposed a feature fusion technique to incorporate our HP-
CNN and the activations of the fully connected layer leading
to a compact representation and efficient prediction perfor-
mance. Addressing the issue of limited training data in the
RGB-D domain, we proposed a deep CNN model that rep-
resents RGB-D objects rendered from multiple viewpoints
in a view-invariant high-level feature space. The end-to-end
training of this model was performed using a large cor-
pus of synthetically generated RGB-D training data from
a repository of 3D models and the HP-CNN representation
was extracted using this model. Experiments on benchmark
RGB-D object recognition datasets demonstrate that the pro-
posed method consistently outperforms state-of-the-art with
a significant margin. We also evaluated the method on cross-

@ Springer

application recognition where we conducted experiments on
scene categorization. Although the CNN model was trained
only on object poses, the proposed method outperformed sev-
eral state-of-the-art methods that were specifically tuned for
scene categorization.
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