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Abstract—Hyperspectral imaging helps in identifying pat-
terns and objects in an observed hyperspectral scene on the
basis of their unique spectral signatures; such identification
is otherwise difficult using regular imaging. Recently, ink
mismatch detection analysis based on hyperspectral imaging
has shown enormous potential in distinguishing visually sim-
ilar inks. Such analysis provides significant information to
forensic document examiners to determine the authenticity
of the questioned documents. However, major challenge still
exist in disproportionate ink mismatch detection because it is
inherently an unbalanced clustering problem. The presented
approach deals with ink mismatch detection in unbalanced
clusters by using hyperspectral unmixing scheme. It identifies
the spectral signatures (endmembers) of the inks and their
corresponding proportions (abundances). Our results show
that HySime outperforms other methods in signal subspace
estimation. Hyperspectral unmixing is done by using minimum
volume enclosing simplex algorithm. Efficacy of the pur-
posed approach is demonstrated by successfully distinguishing
varying disproportionate ink datasets generated from UWA
database and results are compared with existing state of the
art methods in hyperspectral ink mismatch detection field.
We expect that these finding will further encourage the use
of hyperspectral imaging in document analysis, particularly
towards automated questioned document examination.

Keywords-Hyperspectral document images; hyperspectral
unmixing; forgery detection; ink mismatch detection;

I. INTRODUCTION

Analysis of inks is of critical importance to address many

important concerns about the questioned documents. It leads

to the determination forgery, backdating and fraud, thus

playing a vital role in establishing the authenticity of the

documents. This requires distinguishing between different

colors and types of inks. However humans are able to see

in the limited electro-magnetic spectrum and are able to

successfully distinguish between colors which have different

spectral responses in that range [1]. However human eye

cannot discriminate between visually similar inks that have

unique spectral signatures.

Traditionally ink analysis techniques are broadly divided

into two main approaches, destructive and non-destructive

analysis. Chemical Solution based document analysis tech-

niques such as Thin Layer Chromatography (TLC) [2] are

used by forensic documents experts for ink mismatch detec-

tion. Such techniques are based on the fact that different inks

used in documents throughout the history in documents have

their own unique chemical composition and have their own

distinctive way of reacting with different substances depend-

ing upon the reaction environment. Moreover these chemical

solutions based techniques also helped in enhancing the

extremely deteriorated documents for improved readability.

But there are few disadvantages of such methods. Firstly,

although applied with all precautions, these techniques are

still destructive in nature, and the harms to the important

documents are irreversible. They are time consuming and

sensitive to temperature changes as well. Secondly, such

methods are qualitative in nature and it’s difficult to quantify

results and often needs large amount of measurements,

which are often impossible to take in many scenarios due to

its destructive nature.

To overcome such constraints a nondestructive document

examination system such as hyperspectral imaging (HSI) has

more potential. Hyperspectral document imaging is a power-

ful non-destructive tool for gathering information about the

documents which is not available in the visible spectrum of

light. It allows recording and analyzing of the documents in

hundreds of narrowly spaced spectral bands, thus revealing

the hidden details in the scene of interest without getting in

direct contact with it. Hyperspectral imaging has developed

as an effective nondestructive tool for enhancing readability

of extremely deteriorated documents [3], ink aging and in

forensic document analysis [4]. One of the first works in

multispectral imaging was performed by Easton et al. [5].

A spectral imaging system was developed by Christens-

Barry et al. for studying printed maps and cultural heritage

objects [6]. Hedjam et al. [7] proposed algorithm capable

of improving the visual quality of degraded image based

on multispectral imaging. Hedjam et al. [8] also proposed

a mathematical model for improving the readability of

extremely deteriorated text. Hollaus et al. [9] introduced

a method for enhancing degraded and ancient writings

captured by multispectral imaging system on the basis of

spectral as well as spatial information. Brauns et al. [10]

designed a hyperspectral imaging technique based on Fourier

transform for the non-destructive analysis of potentially

fraudulent documents.

A more sophisticated hyperspectral imaging system for

quantifying and monitoring aging processes of documents

was developed by National Archives of Netherlands [11].
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High spatial and spectral resolution images were captured

from near ultraviolet to infrared range but documents re-

quires near 15 minutes of exposure to be captured [12]. Thus

slow acquisition time limits the use of the system when

large amount of images are needed to be captured. Other

hyperspectral imaging based forensic analysis systems like

ChemImage [13] and Foster & Freeman [14] allows man-

ual comparisons of ink samples. Hammond [15] proposed

lab color mode technique to differentiate black ballpoint

pen inks. Such manual analysis techniques have certain

drawbacks as each hyperspectral image can range up to

several hundred of spectral bands depending on the spectral

resolution of the imaging sensor. So manually reviewing the

document under each wavelength of light (i.e. each spectral

band) is dreary process as well as it will require great effort

by the analysis to settle on a choice on the premise of such

subjective investigation.

Morales et al. [16] proposed an approach for ink analysis

in pen verification and handwritten documents using Least

Square SVM classification. Silva et al. [17] developed a non

destructive method to detect fraud in documents based on

different chemometric techniques.

Khan et al. [18] proposed a joint sparse band selection

based hyperspectral imaging document analysis technique

to distinguish different metameric inks. However this work

uses equal ink proportions for conducting experiments and

highly disproportionate cases were less distinguishable and

have low accuracy, limiting its usability in most practical

cases.

In this paper, an ink analysis technique based on hyper-

spectral unmixing is proposed for ink mismatch detection.

Our main focus is to distinguish visually similar inks which

are mixed in varying proportions to form an unbalance

clustering problem. Hyperspectral subspace identification by

minimum error algorithm (HySime) [19] is used to estimate

the number of inks (or endmembers) present in the image.

Moreover, for hyperspectral unmixing, minimum volume

enclosing simplex (MVES) algorithm [20] is employed on

a dimensionally reduced hyperspectral image cube, which

is obtained by weighted affine set fitting [21]. It should be

noted that our work is generalized for ink mismatch detec-

tion of different mixing proportion of several visually similar

inks. Furthermore, unlike Khan et al. [18] no assumptions

are made regarding the total number of inks present in the

document or their respective mixing proportions. The results

of this hyperspectral unmixing approach were also compared

with Khan et. al [18] for varying ink proportions as both

approaches uses same writing ink hyperspectral database.

II. WRITING INK HYPERSPECTRAL IMAGE DATABASE

A. Database Specification

UWA writing ink hyperspectral image database [18] is

used in this work having the spectral resolution of 33 bands

and spatial resolution of 752 x 480 pixels in the visible range

Figure 1: Writing Ink database showing 70 HSI written by

7 subjects with 5 unique blue and black pens

of 400-720nm at steps of 10nm. The database comprises of

70 hyperspectral images of handwritten notes from seven

subjects, all the subjects were asked to write the English

language phrase “The quick brown fox jumps over the lazy
dog” with 10 different inks including five blue and five black

pens on white paper. Moreover each pen came from different

brand to make sure that they have subtle variations within

their ink composition even if they have visually same color.

Such variations allow us to make use of the hyperspectral

property of these inks, because despite of their similar

appearance to naked eye, they have their own unique spectral

signatures. Fig 1 shows 70 HSI having handwritten phrase

“The quick brown fox jumps over the lazy dog” written with

5 different pens of black and blue ink by a 7 subjects.

B. Experimental Setup

To analyze and measure the accuracy of our ink mis-

match detection approach, we generated various mixed ink

HSI datasets from UWA writing ink hyperspectral image

database [18]. We produced mixed ink HSI of various

proportions by merging two, three or four hyperspectral

database images at a time written by the same subject in

different proportions. Same color ink samples were merged

according to the desired ratios to generate ground truth

hyperspectral data cubes. Fig. 2 demonstrates how 1:1 ratio

dataset (D1) is generated by merging two halves of blue

ink hyperspectral images in equal ratios. Further more no

black and blue ink samples were mixed with each other, as

it doesn’t serves the purpose of mixing in practical situation,

as such mixture of inks can be distinguished easily in visual

manner. Additionally, we merged ink samples taken from

same subject to negate any spatial variations induced by

individual handwriting styles, so that ink mismatch detec-

tion can only be made using unique spectral signatures of

123012301230123012301230



different inks.

Figure 2: A sample from Dataset D1

In our analysis, five same color hyperspectral ink images

(i.e. either ’blue’ or ’black’), taken 2, 3 and 4 at a time

from UWA database were merged in different proportions.

We get total of 10 ink combinations, for each blue and black

color ink combination for all cases, except when 4 inks were

mixed at a time; we have only 5 ink combinations per ink.

Approximate mixing ratios of these ink combinations are

given as:

• Two same color inks were merged in ratios of 1:1

(Dataset D1), 1:3 (Dataset D2), 1:7 (Dataset D3), 1:15

(Dataset D4) and 1:31 (Dataset D5).

• Three same color inks were merged in ratios of 1:1:1

(Dataset D6)

• Four same color inks were merged in ratios of 1:1:1:1

(Dataset D7)

Fig. 3 shows ground truth images of dataset D1 to D7, which

are labeled in different colors to identify the constituent inks

in the note. It should be noted that our generated dataset D1

from UWA database has same ink mixing proportions as

described by Khan et al. [18] and is also used for comparison

purposes. And to analyze and compare the effect of varying

ink proportions on ink mismatch detection accuracy with

Khan et al. [18], we also generated same disproportionate

ink cases in ratios of 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2 and 8:1

by five different inks, taken two at a time which results in

ten ink combinations, as for blue and black color each, as

Figure 3: Ground Truth Sample Images of Datasets D1 to

D7 respectively

discussed in [18].

III. METHODOLOGY

As hyperspectral images have a mixed pixel nature, spec-

trum of each pixel is a combination of distinctive materials.

A powerful and proficient technique is needed to unmask

the details of materials and underlying objects. In this

work hyperspectral unmixing is used for analysis of inks

in hyperspectral data cubes. Hyperspectral unmixing [22]

is a process of decomposing the observed spectrum of a

hyperspectral scene into a collection of endmembers and

their relative proportions (or abundances). It is vital in

identifying individual objects from a hyperspectral scene.

There are three major steps in hyperspectral unmixing:

• Dimension Reduction

• Endmember Extraction

• Inversion

Dimension reduction is helpful for reducing the overall com-

plexity of the given dataset and facilitates in the subsequent

processes namely the endmember extraction and inversion.

Typically maximum noise fraction (MNF) [23] and principal

component analysis PCA [24] algorithms along with model

estimation algorithms such as hyperspectral signal subspace

identification by minimum error (HySime) [19] and virtual

dimensionality reduction (VD) [25] are used for dimension

reduction.

Endmember extraction is a process to determine the

chemical species (also called endmember or materials) that

contribute to the measured spectra. Many endmember extrac-

tion algorithm exists including pixel purity index (PPI) [26],

convex cone analysis [27] and vertex component analysis

(VCA) [28]. Most of the endmember extraction algorithms

need prior information about the number of endmembers

present in the scene. In this work HySime [19] is used

for estimation of number of endmembers present in the

hyperspectral scene.

Inversion is the final process in hyperspectral unmixing;

it involves estimation of the abundances associated with

endmembers, In general, unmixing algorithms falls into two

broad categories. Some of these unmixing methods are

able to estimate the endmembers spectral signatures and

their corresponding abundances simultaneously, for example,

iterated constrained endmembers (ICE) [29], non-negative

matrix factorization (NMF) [30], minimum volume trans-

form (MVT) [31] and joint Bayesian approach (JBA) [32].

While the second type of unmixing algorithms can either

only extracts the endmembers present in the scenes or es-

timate their abundances, like fully constrained least squares

(FCLS) [33]. We used Minimum volume enclosing simplex

(MVES) algorithm [20] which can estimate the endmem-

bers spectral signatures and their corresponding abundances

simultaneously.
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A. Estimation of Number of Endmembers Using HySime

Correct estimation of number of endmembers in an ob-

served hyperspectral scene is vital for effective and suc-

cessful unmixing of hyperspectral images. However due to

inevitable presence of noise and outliers it has become quite

a challenging task. Thus the key to solve this problem lies

in the correct estimation of noise. Hyperspectral subspace

identification by minimum error algorithm (HySime) [19] is

used in this work for estimating the number of endmembers

present in hyperspectral scene.

The HySime algorithm consists of two main parts, namely

noise estimation and signal subspace identification. The

main aim of this method is to obtain the subset of eigen-

vectors that effectively describes the signal subspace in

minimum mean squared error sense. Reader is referred

to [19] for more detailed discussion on HySime.

B. Minimum Volume Enclosing Simplex Algorithm

Minimum volume enclosing simplex (MVES) [20] algo-

rithm is employed on a dimensionally reduced hyperspectral

data obtained by affine set fitting method [21]. One of the

limitation of MVES is that it needs number of endmembers

‘N’ present in hyperspectral scene to be known a priori, In

our case we estimated ‘N’ beforehand using HySime [19]

as discussed in section III-A. MVES algorithm successively

leads to the unique identification of endmember signature

matrix A and their relative abundances s[n]. MVES al-

gorithm uses convex analysis concepts like convex hull

and affine hull [34].The unmixing problem of finding the

minimum volume simplex enclosing all the dimensionally

reduced pixel vectors are described as optimization problem

in [20].

C. Post Processing

After hyperspectral unmixing, post processing is needed

to get the desired results. Since endmember estimation

algorithm (HySime) tends to overestimate the number or

materials (endmembers) present in the hyperspectral scene,

so its imperative that we manually discard those abun-

dance maps which are not coherent, i.e. those which spread

throughout the line. Finally, a thresholding scheme is applied

on useful abundance maps to get the final results.

IV. RESULTS

A. HySime:Noise Estimation and Eigen Analysis

Noise estimates are obtained using multiple regression

based approach and it effectively removes the noise from

the useful information. We used eigen decomposition based

approaches like MNF [23] and PCT [24] on our generated

datasets and compared the results with HySime. The results

show that in case of PCT and HySime, first few components

contains the most of the spectral energy, while in case of

MNF, there is gradual decrease in magnitudes, thus showing

the presence of noise along with the signal sources. Table I

shows the first 10 eigenvalues acquired by PCT, HySime

and MNF and their related cumulative percentage of spectral

energy for a sample hyperspectral image from Dataset 7.

Eigenvalues are in arranged in descending order and to get

a better picture of the eigenvalues, the cumulative percentage

is calculated, so that the variance exhibited by first few

eigenvalues can be studied.

From Table I, we can analyze that by using Hysime

algorithm we can achieve more than 99.99% of total spectral

energy in the first 8 eigenvalues, as compared to the spectral

energy given by first eight eigenvalues of PCT and MNF,

which is 99.96% and 32.11% respectively. So it is clear from

this observation that in case of HySime algorithm maximum

amount of energy is contained in the first few eigenvalues.

B. HySime:Signal Subspace Estimation

Signal dimension is estimated by minimizing the mean

square error (MSE) between the original signal and the

noisy projection of it. The number of negative terms in the

minimization k̂ dictates the signal subspace dimension. The

optimum minimization for dataset 6 is given by k =8 after

which the minimum square error curve start rising again.

Fig. 4 shows the subspace dimension k̂ vs mean square

error graph, including the noise error and projection error

as a function of signal subspace dimension of a sample HSI

from dataset D6.

In this sample case from dataset D6, the signal subspace

dimension estimated by HySime k̂ = 8 , which literally

means that in the given dataset there are 8 different signal

sources present, each having its own distinct spectra. But in

general that is not true; most of the endmember estimation

algorithms overestimate the number of spectrally distinct

materials present in the hyperspectral scene due to the pres-

ence of unknown signals. This estimate (k̂ = 8) is used as an

input parameter for MVES algorithm to determine the end-

member signatures and their corresponding abundance maps

in the next step. In our case, HySime outperformed other

state-of-the-art endmember estimation algorithms. Table II

shows the comparison of different endmember estimation

algorithms on datasets. HySime algorithm is compared to

Table I: Eigenvalues and their corresponding Cumulative

Percentage of Spectral Energy

HySime
Spectral

PCT
Spectral

MNF
Spectral

Energy Energy Energy

0.42103 97.2741 0.39678 97.0557 2.1995 4.1506
0.00692 98.8735 0.00693 98.7529 2.1812 8.2666
0.00367 99.7224 0.00369 99.6554 2.1663 12.3546
0.00069 99.8834 0.00071 99.8297 2.15 16.4117
0.00038 99.9716 0.00039 99.927 2.1247 20.4211
4.68E-05 99.9824 6.11E-05 99.942 2.0927 24.3701
2.81E-05 99.9889 4.25E-05 99.9524 2.0622 28.2615
2.15E-05 99.9939 3.52E-05 99.961 2.0402 32.1115
4.80E-06 99.995 1.82E-05 99.9655 2.0265 35.9355
3.43E-06 99.9958 1.02E-05 99.968 2.0155 39.7389
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Figure 4: Number of Eigenvalues vs. Cumulative

Percentage of spectral energy respectively

GENE-AH [21], O-GENE [35] and HFC [25] methods.

HySime outperformed other algorithems

Table II: Estimated Numbers of Endmembers Comparison

(Mean of Over 50 Independent Runs for Sample HSI from

Datasets)

Datasets
HySime GENE-AH O-GENE HFC

Mean Mean Mean Mean
D1 8 27.46 23.77 12

D2 7 26 22 14

D3 7 23 21 12

D4 7 27 23 12

D5 7.05 28 22 11

D6 8 27 24 20

D7 8 27 24 15

C. MVES:Endmember Extraction and Inversion

Minimum volume enclosing simplex algorithm is used for

spectral unmixing i.e. to estimate the endmember signature

matrices and their corresponding abundance maps. The

HySime estimate k̂ as discussed in section IV-B, is used

as an input parameter for MVES algorithm to determine the

endmember signatures and their corresponding abundance

maps. As for dataset D7 the mean k̂ value was 8, so by using

N = 8 as input parameter in MVES we get 8 corresponding

endmember signature matrices and their relative abundances.

Fig. 5 shows useful abundance maps for a sample HSI taken

from dataset D7. Fig. 6 shows the abundance maps which

are manually discarded in post processing step as discussed

in section III-C.

D. Final Results
Segmentation accuracy is determined in terms of in-

tersection/union metric, which calculates the number of
correctly labeled pixels of an ink divided by the number
of pixels labeled with that ink in either predicted labeling or
ground truth labeling [36]. The segmentation accuracy ’A’
is averaged over 10 and 5 samples for datasets D1 to D6

Figure 5: Abundance Maps corresponding to a sample HSI

from dataset D7

Figure 6: Four discarded abundance maps corresponding to

a sample HSI from dataset D7

and dataset D7 respectively for each blue and black ink and
is given as:

A =
Total Positives

True Positives + False Positives + False Negatives

Fig. 7 shows the average segmentation accuracy for

Datasets D1 to D7 for blue and black inks. Fig. 8 shows

the qualitative comparisons of the sample ground truth (GT)

images corresponding to dataset D1 to dataset D7 and the

final result after hyperspectral unmixing.

D1 D2 D3 D4 D5 D6 D7
0.2

0.4

0.6

0.8

1

Datasets

A
cc

u
ra

cy

Blue Ink

Black Ink

Figure 7: Average Ink Segmentation Accuracy for Datasets

D1 to D7
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Figure 8: Comparisons of Ground Truth Images (Dataset D1 to D7) with Final Results

E. Result Comparisons

Ink mismatch detection results are compared with Khan

et al. [18] as both approaches uses same writing ink hy-

perspectral image database. To make this comparison more

meaningful, we generated same proportion ink cases as used

by Khan et al. [18] and discussed in section II-B. The ink

mismatch detection accuracies of cases in which inks are

mixed in equal proportions are compared in Fig 9 for blue

and black inks.

Results indicate that both approaches show great potential

in ink mismatch detection, especially in cases where inks are

mixed in equal proportions as shown in Fig.9. But we are

more interested in studying the efficacy of both approaches

in disproportionate ink mismatch detection cases which is

inherently an unbalanced clustering problem. The effect of

varying ink proportions on ink mismatch detection accuracy

are compared in Fig. 10. Unlike the first comparison, these

ink mixtures consists of highly unbalanced clusters. Khan

et al. [18] shows satisfactory results when the ink clusters

are nearly balanced but its accuracy deteriorates as we

approach to highly unbalanced ink clusters as evident in

highly unbalanced cases such as 1:8 and 8:1 as shown in Fig.

10.

V. DISCUSSIONS

Hyperspectral document imaging has great potential for

determining the authenticity of questioned documents in

forensic document examination. We proposed a hyperspec-

tral unmixing based method for ink mismatch detection

in cases where two or more inks are not mixed in equal

proportions. We compared our result with Khan et al. [18]

and demonstrated that our approach showed great potential

in highly disproportionate ink cases, which can be seen for

ink proportions 1:8 and 8:1 in Fig 10. Disproportionate ink

mismatch detection is challenging because it is inherently an

unbalanced clustering problem. We used hyperspectral sub-

space estimation by minimum error algorithm (HySime)to

estimate the number of inks (or endmembers) present in

hyperspectral document image. Minimum volume enclosing

simplex algorithm (MVES) is used for endmembers extrac-

tion and inversion. One of the limitation of this unmixing

scheme is that as endmember estimation algorithm (HySime)

tends to overestimate the number of inks (endmembers)

present in the hyperspectral scene so we have to manually

discard those abundance maps which are not coherent i.e.

those which spread throughout the scene in post processing

step. The results indicate that this scheme showed high ac-

curacy in ink mismatch detection for varying proportion ink.

We hope that the results presented in this paper will further

motivate the researchers to explore new exciting challenges

towards automated hyperspectral document analysis.
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