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Abstract. A handwritten signature serves as an important biometric
modality to identify individuals. The state-of-the-art methods for signa-
ture verification employ deep learning networks to perform the classifi-
cation task. However, deep neural networks can be fooled by adversarial
attacks that introduce small imperceptible perturbations to the input
images. In this paper, we explore the vulnerability of signature verifi-
cation systems against adversarial attacks. The state-of-the-art attacks
developed by the machine learning community to fool image classifiers
are unsuitable for attacking document classifiers as they are applied to
the background of signature images making them quite perceptible. To
overcome this challenge, we design an attack based on dictionary learning
with the goal to perturb the foreground (strokes) of the signature image.
The proposed method is evaluated in terms of attack success rate and
imperceptibility. The experimental results on the benchmark CEDAR
dataset using Siamese Deep Signet Model highlight the efficacy of the
proposed approach as compared to other methods by achieving 95% and
98% attack success rates with our proposed approach.

Keywords: Adversarial Attack · Sparse Encoding · Dictionary Learning
· Signature Verification.

1 Introduction

Biometric Systems are widely used to recognize individuals in legal, financial,
and administrative matters [7, 15]. Handwritten signatures serve as one such bio-
metric which are required especially during financial transactions to identify and
verify an individual. The Signature verification systems can be offline (static)
and online (dynamic). The offline systems identify individuals from a signature
image (spatial information) containing handwriting strokes whereas the online
system’s recognition is based on the signature generation process (considering
spatial and temporal information). Offline systems are used widely due to low
cost and convenience. Moreover, there are scenarios where offline signature ver-
ification is inevitable for example during cheque transactions. The traditional
systems relied on handcrafted features for signature verification but lately, most
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of the research efforts on offline signature verification systems are based on deep
neural networks. These systems work under two approaches a) writer indepen-
dent and b) writer dependent. The writer-independent approach is generally
considered more practical as the systems based on writer dependent approach
need to be updated every time a new writer is registered [4]. This research ar-
ticle also considers writer-independent offline signature verification scenarios to
evaluate the robustness of signature verification systems.

We have used SigNet: Convolutional Siamese Network [3] in this study. The
available data is divided into train and test sets with a couple of image pairs
such as (genuine, genuine) and (genuine, forged) labeled as, similar and dissimilar
classes. Siamese networks can efficiently model such problems. Siamese networks
are based on twin convolutional networks which accept two images that can ei-
ther be similar or dissimilar. Since Deep Neural Networks (DNNs) are employed
here for signature verification, unfortunately, DNNs are vulnerable to adversar-
ial examples [19]. These examples are generated by imposing carefully crafted
perturbations to clean input images. This research area gained quick popular-
ity since its advent [19] and a lot of attacks have been proposed to exploit the
vulnerabilities of deep neural network-based systems. However, attacking sig-
nature images is a relatively different and challenging task when compared to
other fields. The vulnerability of signature verification systems against adversar-
ial attacks has not been explored thoroughly and only a handful of research is
available on the topic. In this article, we present the first attempt to particularly
attack Siamese network-based signature verification system.

It should be noted that attacking verification systems is very different from
attacking classification systems and presents challenges not present in classifi-
cation systems. First, when a new user gets registered a new unseen class and
unseen examples are introduced to the system. Second, for signature verification
systems the background and foreground are clearly separated and a verification
system clearly uses the foreground information (strokes) to extract features and
then classify the image as genuine or forged. The state-of-the-art attacks impose
perturbations on the background making them perceptible and since background
information is not used by the system, therefore, the attack success rate is greatly
reduced. Further, in the model used in this article, the images are inverted dur-
ing pre-processing making it even harder to attack. The third problem is that
most of the state-of-the-art methods specifically gradient-based methods applied
to signature verification systems are white box in nature (they require full in-
formation on the training set, the model used, and parameters learned in order
to attack a system). These systems are well protected by organizations and such
information is unknown to attackers. So traditional white-box attack methods
are not practical.

In view of the above-mentioned problems, this research article proposes a
black-box attack method to attack signature verification systems using ideas
from sparse representation. Our recent work explored the idea of dictionary
learning to craft sparse adversarial attacks for image classification [8]. Formally,
we used the idea of sparse representation to craft adversarial images using feature
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maps of an image. In this research, we have extended the idea and developed
a novel approach to learn a dictionary on feature descriptor (foreground ex-
traction) and improved sparse representation to create adversarial attacks with
the goal to perturb the foreground (strokes) of the signature image. The sparse
representation includes dictionary learning and sparse coding stages to generate
perturbations that can be induced in the original images making them adversar-
ial. Dictionary learning is a transformation process that transforms an image to
its linear combination of basic elements called atoms. Sparse Coding is a method
for learning a sparse representation of the input using dictionary learning [13].
In this paper, a novel feature descriptor approach is used to learn the dictionary
and improve sparse representation quality. In this regard, we used the Grab cut
algorithm [18] to extract the foreground of the signature images and then learn
the dictionary. This is an attempt to learn only important and relevant informa-
tion. The proposed technique is evaluated on the benchmark publicly available
CEDAR Signature Dataset and is also compared with the state-of-the-art meth-
ods.

The main contributions and findings include:

1. The proposed model generates adversarial perturbations to fool signature
verification systems with minimum ℓ2-norm and maximum attack success
rates of 95% and 98% respectively.

2. We introduce improved sparse representation quality by learning a dictio-
nary on a feature descriptor (foreground extraction) rather than original
unprocessed images.

3. We attacked a convolution-based Siamese network for a handwriting signa-
ture verification system not attacked before.

4. Our experiments show that attacking strokes of signature is important as
attacks on the background won’t produce desirable results.

The structure of the paper is as follows. Section 2 describes the related works.
Section 3 details the problem, threat model, and methodology of the proposed
approach. Section 4 defines the experimental protocol. Section 5 presents exper-
imental results and analysis. Section 6 concludes the paper.

2 Related Work

Adversarial examples are manipulated input images with perturbations that fool
the classifiers. The concept of adversarial attacks was introduced by Szegedy et
al. [19] in 2013. Since then a lot of attacks have been proposed by the machine
learning community to evaluate the robustness of deep networks. Among the
pioneers is Fast Gradient Sign Method (FGSM) [5]. This is a gradient-based
method that maximizes the loss of the classifier to craft adversarial examples.
Later iterative methods like Deep Fool [17], Basic Iterative method (BIM) [9],
and Carlini and Wagner (C&W) [2] were also introduced. Universal adversarial
attacks create a single adversarial perturbation that fools the classifier with high
probability and generalizes well across different neural networks [16].
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Projected Gradient Descent [12] is a well-optimization method essentially simi-
lar in behavior to iterative FGSM with the difference that it initializes the input
sample to a random point in the ball of interest. On the other hand, Boundary
Attack [1] is one of the decision-based attacks which follows the decision bound-
ary between adversarial and non-adversarial examples using a simple rejection
sampling algorithm.

In the context of adversarial attacks against signature verification systems
Hafemann [6] explored the vulnerability of these systems against adversarial at-
tacks. They attacked the system using existing adversarial attacks, like FGSM
and C&W and presented two types of threats to these systems hence two types
of attacks. Type: I, where an adversary manipulates a genuine signature to be
misclassified by the system (False Rejection). Type: II where a forged signature
is manipulated to be classified as genuine by the systems (False Acceptance).
The authors point out that Type: I attacks are easy to generate as compared to
Type: II. These perturbations were introduced on the background of the images
making them quite perceptible and requiring perfect knowledge of the system
under attack which is not practical. In another research, Li et al. [10] proposed a
gradient-free black-box attack against signature verification systems by restrict-
ing the area of perturbations to the region of strokes. Their attack method is not
applicable to binary images as the perturbation intensity of each pixel is not con-
tinuously adjustable. Therefore, selecting optimal pixels for perturbations will
not be possible.

To the best of the authors’ knowledge, these two research articles explored
the vulnerability of signature verification systems against adversarial attacks.
This area still needs a lot of exploration and presents great room for improve-
ment. None of the above-mentioned researchers tested their proposed methods on
Siamese Networks. Attacking Siamese networks is much more challenging than
other classification systems. It is evident from the results section that state-of-
the-art attack methods couldn’t attack these networks efficiently. The attack
success rates of the state-of-the-art are quite low when compared with litera-
ture where they showed good performance while they attacked other signature
verification systems. Siamese Networks are widely used and acquired state-of-
the-art performance on signature verification systems. That is why they have
gained fast-growing popularity in signature verification systems. These systems
serve the rightful purpose of comparing the images and then identifying them
as genuine or forged based on their similarity or dissimilarity. Therefore, in this
research, we explored the vulnerability of the Convolutional Siamese Networks
against adversarial attacks. We designed a black-box attack (information on the
training set, the model used by a verifier, and parameters learned are not re-
quired) based on the sparse representation of foreground features of images. The
experimental results prove the efficacy of the proposed method.
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Fig. 1. General Framework of the Proposed Attack Model

3 Methodology

This section explains our methodology in detail as illustrated in Figure 1. The
first step in the proposed approach is to extract the foreground from the signa-
ture images. These images are fed to a dictionary learning algorithm to learn
sparse representation. The sparse representation is then used as a perturbation
to manipulate the original input image to fool the classifier. Below we discuss the
Siamese Network under attack, followed by the problem statement, foreground
extraction, sparse representation, and adversarial image generation.

3.1 Siamese Network

In this research, we evaluated the robustness of the Siamese network named:
Signet [3] against adversarial attacks. The Siamese networks are very popular
among signature verification systems and to the best of our knowledge are not
yet studied for robustness against adversarial attacks. One of the reasons behind
their popularity is their ability to learn from minimum data. They need only
a few images to make better predictions and data is not abundant in various
problems including signature verification [14]. The Siamese networks are based
on twin CNN architectures with shared weights joined at the output by a loss
function. The goal is to find similarities between the two images. They learn a
feature space when similar observations are placed in proximity and are used
to evaluate whether a given signature is genuine or forged. This is achieved
by exposing the network to both similar and dissimilar pairs and the network
maximizes the Euclidean distance between dissimilar pairs whereas minimizes
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the distance between similar pairs. The popular loss function used by Siamese
networks is contrastive loss and is defined as follows:

L(a, b, y) = α(1− y)D2
w + βy max(0,m−Dw)

2 where a, b ∈ X (1)

a and b are input samples that belong to the set X. They can be genuine
signatures or forged entries in the system. y is a binary indicator that indi-
cates whether the given two signatures belong to the same class or not. α
and β are two constants whereas, m indicates the margin i.e. 1 in this case.
Dw =∥ f(a;w1) − f(b;w2) ∥2. It is the Euclidean distance computed in fea-
ture space, f is a function that maps a signature image to its real vector space
through CNN whereas, w1 and w2 are learned weights of that particular layer
of the network. The training of Siamese networks involves pairwise learning so
the classifier won’t output probabilities of the prediction but the distance from
each class. We have reported this distance in our experiments of the proposed
approach as well as for the state-of-the-art methods. The threshold of 0.5 is
selected to determine if the output of the Siamese network is the same or not.

3.2 Problem

A typical Siamese-based offline signature verification model under attack is de-
picted in Figure 2. The model takes signature images as input. These signature
images can be genuine – by authentic users or can be forgeries – entered into the
system by a skilled forger. The forgers generate signature images that resem-
ble original images from the same user in an attempt to fool the system. Since
the system is trained on skilled forgeries as well, Signature verification systems
successfully recognize the forgeries. However, these systems are still vulnerable
to two main threats. First, an original authentic signature image can be mod-
ified in a way that system rejects the original image that is Type: I, False
Rejection (FR). The second form of attack is the one in which the forged sig-
nature images are modified in a way that gets accepted by the system termed as
Type: II, False Acceptance (FA). Some previous researchers consider that
the second type of adversarial attack is harder to generate [6, 10] as compared to
the first one. However, in the case of Siamese networks, our experiments show
that Type: I attacks are harder to generate. In this paper, we considered both
of these adversarial attacks for evaluation purposes. Adversarial examples are
images similar to the true data distribution but fool the system. These images
are generated by adding small perturbations to the original data. If we denote
X as input space and a function F (X) maps these input to a label Y then the
adversarial examples Xadv that are visually similar to clean samples Xorg but
fools the classifier that is F (Xadv ̸= Y ). In the case of the Siamese network

L(a, badv) ̸= y (2)

where,

badv = b+ ϵp and d(badv, b) < ϵ (3)
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where, ϵ is the magnitude of perturbation p added in the image. The distance d
between original signature image b and adversarial image badv should be mini-
mum.

Adversarial Attacker

Siamese Signature 
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CNN*
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Test Image

Users

Forgers

Contrastive 
Loss

L= (𝑖𝑚𝑔1, 𝑖𝑚𝑔2, 𝑦)

Output
0 --> similar

1--> dissimilar

Fig. 2. Siamese Network-based Signature Verification System and Threat Model

3.3 Foreground Extraction

The first step in our proposed approach is to extract the foreground of the
signature image. The foreground contains the signature strokes. Our goal is to
learn a dictionary on these strokes as they are the only important and relevant
information that we need from the signature image. Background doesn’t hold
any detail in signature verification systems. In order to learn specific features
we intend to learn the dictionary on the foreground of the image rather than
the full image. The background pixels are changed to 0-pixel value whereas, the
foreground to 1. Let pixels covering the foreground be denoted as Fd and that
of the background as Bd.

X
′
= Fd +Bd where, Fd = 1 and Bd = 0 (4)

For the above-mentioned purpose, we used the GrabCut algorithm [18] to extract
the foreground of the image which can be used to learn the dictionary and its
corresponding sparse representation. It is a graph cuts-based image segmentation
method. It uses a Gaussian mixture model to separate the background and the
target object.

3.4 Sparse Representation (Dictionary Learning and Sparse
Coding)

The next step is to learn the sparse representation of the processed images from
the last section. The foreground extraction serves as an important feature de-
scriptor to improve the quality of learned representations. The goal is to improve



8 Maham et al.

the feature descriptor of the signature images by keeping specific and minimal
information. Sparse coding is an encoding process where a sparse representation
of input images is learned using a linear combination of basic elements. these
elements are called atoms and they combine to form a dictionary. Let X

′
denote

the foreground extracted images from the previous step. A transformation op-
erator to learn sparse representation is applied to it and denoted as T (X

′
). The

optimization function to learn dictionary and sparse representation proposed by
Mairal et al. [13] and is given as

T (X
′
) = Dα (5)

min
D,α

1

2
∥ x

′
−Dα ∥22 +λ ∥ α ∥1 s.t. ∥ Dk ∥2= 1 ∀ k ∈ [0, n] (6)

were, x
′
is the pre-processed signature image and λ is a regularization parameter,

α is the sparse representation, D is the dictionary learned, and n is the number
of dictionary atoms. The algorithm explaining the steps of this section is listed
in Algorithm: 1.

Algorithm 1: Adversarial Dictionary Learning

Input: X
′
→ Set of pre-processed original signature images;

Result: D → Learned Dictionary , T (X
′
)→ Sparse representation

D → Initial Dictionary ;
OMP → Orthogonal Matching Pursuit() ;
k → Sparsity ;
n→ no. of atoms ;
for t = 1 to iterations do

T (X
′
)← OMP (D,X

′
);

Dictionary Update Stage;

D = minD,α
1
2
∥ x

′
−Dα ∥22 +λ ∥ α ∥1 s.t. ∥ Dk ∥2= 1 ∀ k ∈ [0, n] ;

Return D Return T (X
′
)

3.5 Tuned adversarial signature image generation

This is the final stage where an adversarial image is generated. A dictionary of
perturbations is learned and saved by the dictionary learning algorithm as dis-
cussed above. These perturbations have a different effect on the attack success
rate. So in this step, the adversarial signature image is tuned for all the avail-
able perturbations. The perturbations that maximize the loss of the classifier
and achieve the highest attack success rate are selected. The complete process
of adversarial image generation involving all sections is defined step by step in
Algorithm 2. The first step is to extract the foreground of signature images. For
Type: I attack the forged samples of images are used to learn the dictionary
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whereas, genuine samples in the case of Type: II attacks. Next, we learn the
dictionary and compute sparse representation. This sparse representation is ba-
sically our noise/perturbation to be used to manipulate the original image. As
we discussed earlier, contrary to some findings in literature the Type: I attack
was much more challenging than anticipated in the case of Siamese networks.
With reference to Siamese networks, the additive noise model couldn’t attack
the genuine image to be declared as forged by the classifier. Therefore, inspired
by recent work on multiplicative noises [11] we multiplied the noise perturba-
tion with the original image to craft our adversarial example. The experimental
results prove the effectiveness of multiplicative noise over additive. Detailed anal-
ysis of multiplicative and additive noises for the Type: I attack is discussed in
Section 5.

Algorithm 2: Tuned Adversarial Signature Image Generation

Result: Xadv → Tuned Adversarial Image
Input: Xorg → legitimate source input image;
Xforg → skilled forged signature input image;
ϵ→ magnitude of noise ;
L→ classifier’s loss;
if attack = type : I then

X
′
= Grabcut(Xforg);

else

X
′
= Grabcut(Xorg);

T (X
′
) = DictLearningAlgo(X

′
);

P = T (X
′
);

for i < size(Xorg) do
if attack = type : I then

maxL(Xorg,Xadv,Y ) Xadv i = Xorg i ∗ ϵPi;

else
minL(Xorg,Xadv,Y ) Xadv i = Xorg i + ϵPi;

Return Xadv

4 Experimental Protocol

The experimental design and detail to evaluate the proposed methodology are
discussed in this section.

4.1 Dataset

We conducted the experiments on the widely used benchmark signatures dataset,
CEDAR signature Database3. We have used this dataset as it is quite well-

3 http://www.cedar.buffalo.edu/NIJ/data/signatures.rar
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Table 1. Attributes of CEDAR dataset used in the experiments to define training and
test splits. Note that the splits were carefully done in a way that the users in dictionary
learning, training Siamese network, and testing were mutually exclusive.

Attributes Count

Number of users 55

Users in the training set 28

Users in the test set 12

Users to train the dictionary 15

Genuine signatures per user 24

Forgeries per user 24

known and used by almost all the articles we reviewed during this research.
Moreover, it contains signatures of 55 users from different ethnic and professional
backgrounds. Each user signed 24 genuine signatures with a difference of 24
minutes in between. Forgers copied the signatures of 3 genuine users, 8 times
each. Hence, each user has 24 genuine and 24 forged signatures. A total of 55×
24 = 1320 genuine and 1320 forged signatures are available in this dataset. The
total number is 1320×(2) = 2640. These images are available in grayscale mode.

We divided the dataset into training and test sets as shown in Table: 1. The
system is trained and tested using signatures from 40 users with a train test
split of 70% : 30%. We also reserved some signature images which were not part
of the training or testing of the model. This allows us to define a black-box
attack scenario to evaluate our approach where the attacker has no access to the
training or test data or the model used by the signature verification system. The
remaining signatures from 15 users are used to simulate the environment where
an attacker has a dataset of his own with some genuine signatures by users and
the respective forgeries. These images are used to train the dictionary and learn
sparse representations. These sparse representations are added as perturbations
to the test set of the dataset to create adversarial examples.

4.2 Pre-processing and Performance of Signet-Siamese Network

The model is trained and tested as per the guidelines outlined in the paper [3].
The same pre-processing steps are employed. The publicly available implementa-
tion of the model architecture is used to carry out the training4. The images are
resized to a fixed size (155 × 220) and then inverted to get a black background
with pixel values: 0. Finally, all the images are normalized. The detail on the
Siamese network has been provided in Section 3.1. We trained the network for
80 epochs. The training loss equal to 0.3 and accuracy of 85% are calculated
respectively. The test loss and accuracy were 0.015 and 97% respectively.

4 https://github.com/AtharvaKalsekar/SigNet/
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4.3 Metrics

The contrastive loss of the classifier, attack success rate, and mean and median
ℓ2-norm are calculated during experimentation. The attack success rate defines
the number of genuine signatures that failed to pass through the system and the
number of forged signatures that successfully passed through the system. The
ℓ2-norm is a standard method to compute the length of a vector in Euclidean
space. We use it to find the similarity between two images. Here it is the squared
distance between the adversarial and original clean image. A lower distance
means that the two images appear the same and the noise in adversarial images
is imperceptible. We have calculated the mean and median values of ℓ2-norm.

4.4 State-of-the-art Adversarial Attacks

We compared our approach with state-of-the-art methods. The adversarial ro-
bustness toolbox5 was used to conduct experiments for the state-of-the-art. We
evaluated the proposed systems against Fast Gradient Sign Method (FGSM) [5],
Basic Iterative Method (BIM [9], Projected Gradient Descent (PGD) [12], and
Boundary Attack Method [1]. These are all baseline attack methods that achieved
state-of-the-art attack success rates in traditional image classification systems.
These systems are gradient-based evasion attacks that are white-box in nature
(where the attacker has access to the training or test data or the model used
by a signature verification system). Epsilon ϵ refers to the magnitude of noise
introduced to the original clean image to create an adversarial image. Our pro-
posed method relies on a very small magnitude of noise in order to attack the
system. The other state-of-the-art methods don’t attack the system at all if the
ϵ is kept very low. Therefore, we cannot test the system for the same values of
ϵ. We have used ϵ = 0.3 for the state-of-the-art to conduct the experiments.

5 Results and Discussion

This section explains the results reported when the proposed approach is ap-
plied to the CEDAR signature dataset and compared with the state-of-the-art
methods. Moreover, the effect of perturbations on strokes of signatures images
is discussed with reference figures and examples.

5.1 Type: I Attack (False Rejection)

In this attack, perturbation is applied to genuine signatures images such that
the system fails to verify the image as genuine. Contrary to the popular opinion
in the literature where attacking genuine signatures(Type: I) is argued to be an
easy task, we found the Type: I attack to be equally challenging as that of Type:
II specifically in the case of Siamese networks. Since the model pre-processes the
image where the background is black and the signature strokes are white. This

5 https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
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makes it hard to add noise to the strokes. The background noise fails to attack
the system. This is evident from results tabulated in Table 2. Only the proposed
method is able to attack successfully with a success rate of 95% and with the
lowest ℓ2-norm value of 0.09. The first row of Figure 3 illustrates the example
images generated through our proposed approach as well as the state-of-the-art.
It can be clearly seen that almost all baseline methods attack the background
of the image, therefore, their attack success rates are very low, and ℓ2-norm is
quite high.

Table 2. The magnitude of noise ϵ, Loss of Classifier (higher the value more successful
the attack is), Attack Success Rate, Mean and median ℓ2-norm (lower the value more
imperceptible the attack is) values reported for Type: I attack for our proposed method
and state-of-the-art.

Method Epsilon(ϵ) Loss Attack Succ. (%) Mean ℓ2-norm Median ℓ2-norm

FGSM [5] 0.3 0.19 29 0.37 0.37

BIM [9] 0.3 0.05 8 0.13 0.12

PGD [12] 0.3 0.04 7 0.13 0.12

Boundary Attack [1] - 0.01 2 0.42 0.43

Proposed 0.002 1.50 95 0.09 0.09

Attack Type: I

Clean Genuine Image Proposed Method 
Attack Success (95%)

FGSM Attack Success 
(29%)

BIM Attack Success 
(8%)

PGD Attack Success 
(7%)

Boundary Attack 
Success (2%)

Attack Type: II

Clean Forged Image Proposed Method 
Attack Success (98%)

FGSM Attack Success 
(15%)

BIM Attack Success 
(10%)

PGD Attack Success 
(10%)

Boundary Attack 
Success (40%)

Fig. 3. Clean and Adversarial Image examples from the results of experiments reported
in Table:2 and Table:3 for Type-I and Type-II attacks

5.2 Type: II Attack (False Acceptance)

In this attack, the perturbation is applied to forged signature images such that
the system accepts them during the verification and classifies them as genuine



Adversarial Attacks on Signature Verification 13

which was previously declared forged by the system. The results for this type are
tabulated in Table 3. The proposed approach successfully attacks the system with
an attack success rate of 98% using a very low magnitude of noise ϵ = 0.0004. The
ℓ2-norm is also the lowest among all baseline methods which is 0.07. The second
row of Figure 3 illustrates the example images of the proposed method and all
other methods. Again the other methods fail to attack the system significantly
as they attack the background of the image except for the Boundary Attack.
Nevertheless, its attack success rate is still very low (attack success rate of 40%,
and the ℓ2-norm of 0.17) compared to the proposed method (attack success rate
of 98%, and the ℓ2-norm of 0.07).

Table 3. The magnitude of noise ϵ, Loss of Classifier (lower the value more successful
the attack is), Attack Success Rate, Mean and median ℓ2-norm (lower the value more
imperceptible the attack is) values reported for Type: II attack for our proposed method
and state-of-the-art.

Method Epsilon(ϵ) Loss Attack Succ. (%) Mean ℓ2-norm Median ℓ2-norm

FGSM 0.3 0.88 15 0.36 0.36

BIM 0.3 1.27 10 0.12 0.12

PGD 0.3 1.27 10 0.12 0.12

Boundary Attack - 0.92 40 0.17 0.17

Proposed Method 0.0004 0.01 98 0.07 0.07

Clean Genuine Image Adversarial Image 
magnitude of noise=0.001
Distance prediction from 
genuine image: 0.0003

Adversarial Image 
magnitude of noise=0.002
Distance prediction from 
genuine image: 0.0003

Adversarial Image 
magnitude of noise=0.003
Distance prediction from 
genuine image: 0.0003

Adversarial Image 
magnitude of noise=0.004
Distance prediction from 
genuine image: 0.0003

Attack Type: I 

Fig. 4. Effect of magnitude of noise on the prediction of the model in case of Type: I
attack

5.3 Effect of magnitude of noise on the prediction of the model on
genuine signatures images

As discussed above, Type: I attack, which were generally considered as an easy
target [6, 10], have been proven challenging while attacking the Siamese network.
Figure 4 illustrates the effect of the increasing magnitude of noise on the genuine
signatures. It can be seen that even increasing the magnitude of noise causes no
effect on the prediction of the model. It still declares the image as genuine. This
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(a) Signature adversarial image with additive 
noise –minimum to no perturbations on strokes 

(b) Signature adversarial image with 
multiplicative noise – perturbations on strokes 

Fig. 5. Additive and Multiplicative Noise Adversarial Example Images with same val-
ues of epsilon and their effect on strokes of the signature image
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is because the strokes of the images remain intact and the model only used the
information of strokes to learn features and classify them.

5.4 Effect of multiplicative and additive noise on genuine
signatures

We have used multiplicative noise in the case of the Type: I attack for the pro-
posed method. Figure 5 illustrates how multiplicative noise attacks the strokes
of the signature image while additive noise just disrupts the background. We
have shown a zoomed version of the portion of the stroke to illustrate our point.
This is why we chose multiplicative noise rather than popular additive noise to
craft our adversarial examples.

6 Conclusion

In this research, we attacked a convolutional Siamese signature verification net-
work using sparse representation and dictionary learning. A novel algorithm to
learn a dictionary from an important feature descriptor that extracts foreground
is proposed. The attack proposed is black-box in nature that doesn’t require in-
formation about the signature verification model used, its weights, or training or
test data. The experimental results show that our proposed method outperforms
all the baseline methods and achieves attack success rates of 95% and 98% for
Type: I and Type: II adversarial attacks, respectively.
In the future, we will test our proposed method with more datasets and evalu-
ate its performance for transferability across other deep networks. We shall also
evaluate our proposed approach against defense methods. The improvement of
sparse representation quality in terms of improved feature descriptors should be
studied too.
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