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Abstract—Visually rich document understanding involves the
interpretation of documents with varied formats and complex
layouts, including multi-line entities, presenting a significant
challenge. This study addresses these challenges by introducing
a document comprehension model based on the LayoutLMv3 ar-
chitecture, incorporating two-dimensional (2D) positional embed-
dings to capture both row and column information. Additionally,
a multi-stage Transformer network is employed for hierarchical
processing of document features. The proposed model is evalu-
ated through extensive experiments on FUNSD dataset, achieving
improved performance in both text-centric and image-centric
document understanding tasks. Results demonstrate enhanced
spatial comprehension and computational efficiency as compared
to the state-of-the-art, establishing our approach as a significant
contribution to the field of visually rich document understanding.

Index Terms—Visually Rich Documents, Multi-modal Trans-
former, positional embeddings

I. INTRODUCTION

Visually Rich Documents (VRDs) combine diverse textual
and visual elements, such as paragraphs, tables, charts, and
images (fig. 1), which are commonly found in domains like fi-
nance, medicine, and academia. These documents present chal-
lenges for automated systems, as they require understanding
of not only the textual content but also the spatial relationships
between different visual elements [1]. Pre-trained transformer-
based models [3], [12] have recently gained significant atten-
tion in Visual Document Understanding (VDU), due to their
substantial advancements in document comprehension tasks.
Many VDU models have adopted BERT’s masked language
modeling (MLM) technique [2], designed to learn bidirectional
representations for text. However, aligning pre-training objec-
tives for both text and image modalities remains complex.
Models such as DocFormer [3] and SelfDoc [6] attempt to

Fig. 1: Samples of Visually Rich Documents [27]

address these challenges through various approaches. For in-
stance, DocFormer emphasizes learning granular features over
high-level structures like document layouts by reconstructing
image pixels via a CNN decoder [5]. In contrast, SelfDoc
addresses more complex tasks by regressing masked region
characteristics, which is more challenging than classifying
traits from a predefined vocabulary [8]. Nonetheless, issues
in accurate comprehension of multimodal entities in VRDs
persist.

LayoutLMv3 [23] improves upon these models by inte-
grating multimodal learning, combining masked language and
image modeling to better capture the structure and content
of VRDs. LayoutLMv3 also uses target image tokens derived
from latent codes of a discrete VAE, with each text word
corresponding to an image patch, drawing inspiration from
models like DALL-E [4] and BEiT [9]. It proposes a Word-
Patch Alignment (WPA) objective that predicts whether a text
word’s associated image patch is masked to achieve cross-
modal alignment. Influenced by ViT [10] and ViLT [11],
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LayoutLMv3 eliminates the need for complex pre-processing,
such as page object detection, by directly utilizing raw im-
age patches from document images. This model is the first
multimodal pre-trained VDU model that does not depend on
CNNs for image embeddings, saving parameters and elimi-
nating the need for region annotations. Experimental results
validate LayoutLMv3’s state-of-the-art performance in both
text-centric and image-centric VDU tasks [23]. One particular
challenge that remains is understanding visually rich multi-
line entities. Such entities often present complexities that even
LayoutLMv3 struggles to address adequately and therefore
requires further exploration.

Recently, there has been growing interest in explainable
techniques, leading to the development of methods to inter-
pret model behaviors, especially for specific data modalities
such as text and images. Local Interpretable Model-Agnostic
Explanations (LIME) [25] is one such popular technique, as it
provides insight into specific predictions without necessarily
explaining the entire model. This focus on interpretability
is even more critical in the complex multimodal context of
VDU. However, due to the complex integration of multiple
data modalities into a single model, explainability remains
underexplored in the domain of VDU. In this paper, we
leverage explainability techniques to analyze the performance
of the widely-used LayoutLMv3 model on the FUNSD [24]
dataset comprising visually rich documents. As a result, it is
observed that despite an overall high F1 score, the model
performs poorly on multi-line entities like headings, due to
insufficient spatial comprehension. Consequently, we propose
to employ 2D positional embeddings to better encode the
spatial arrangement of patches to capture the representation of
entities spanning across multiple lines. The main contributions
of this study are as follows:

1) We employ the LIME technique for the explainability of
the LayoutLMv3 model’s performance on visually rich
documents.

2) We incorporate 2D positional embeddings to better en-
code the spatial arrangement of patches. These embed-
dings are combined to provide a more comprehensive
representation of each patch’s location in the document.

3) We explore a multi-stage transformer approach where
the model is divided into several stages, each consisting
of multiple transformer layers. This hierarchical process-
ing enhances the overall model’s performance without
compromising efficiency.

The rest of the paper is organized as follows. Section 2
focuses on the relevant literature review. Section 3 covers
methodology, which includes image embeddings with 2D po-
sitional embeddings, multistage transformers, and explainable
AI. Section 4 provides an overview of experiments, Section 5
discusses results, and Section 6 concludes the paper.

II. LITERATURE REVIEW

Various methods have been explored in the literature to fuse
image, spatial, and text features for document understanding,
especially for extracting information from structurally rich

documents like forms, tables, receipts, and invoices. Despite
advancements, the optimal fusion of multimodal features re-
mains an open research challenge.

Earlier models focused on region-based features [19]–[21].
SelfDoc [6] introduced a more challenging pre-training task
by regressing masked region features, which are noisier and
more difficult to learn compared to classifying discrete features
within a limited vocabulary [7], [8]. This complexity adds
to the difficulty of cross-modal alignment learning, a critical
aspect of multimodal representation learning. LayoutLM [13]
extended the BERT architecture by integrating 2D spatial
coordinate embeddings with text token embeddings, allowing
the model to better process spatial layouts in documents.
Visual features for each word token, derived using Faster-
RCNN, were incorporated alongside bounding box coordi-
nates. Another model called BROS [12], used a BERT-
based encoder with a graph-based classifier derived from
SPADE [26] to predict entity relationships within documents.
Similar to LayoutLM, BROS combined 2D spatial embeddings
with text tokens and is tested on various document types,
including receipts and forms. Document images imply a fine-
grained, word-level alignment relationship between text and
image areas. UNITER [19] proposed an optimal transport-
based word-region alignment objective, which ViLT [11] fur-
ther extended to patch-level image embeddings. UDoc [22]
effectively aligned images and text using the mask operation
provided by MIM.

Recent advances, such as grid-based features [15], have
further improved performance by addressing limitations like
predefined object classes and regional supervision. Grid-
based approaches [3], [14], for example, have been employed
for processing invoice images as collected in FUNSD [24]
benchmark dataset, where text pixels are represented through
character or word vectors and classified into specific field types
using convolutional neural networks (CNNs). DocFormer [3]
and LayoutLMv2 [14] are popular examples of such VDU
models. DocFormer proposed learning of granular features
using a CNN decoder by reconstructing image pixels. Lay-
outLMv2 [14] further improved the performance of LayoutLM
by treating visual features as separate tokens instead of
embedding them into text tokens. This modification enabled
the model to more effectively use unlabeled document data
through new pre-training tasks.

For document processing, models like LayoutLMv3 intro-
duced the Word-Patch Alignment (WPA) objective, which
predicts whether a text word’s corresponding image patch
is masked, facilitating better cross-modal alignment. Lay-
outLMv3 shows the power of masked image modelling
(MIM) for linear patch image embedding to construct
aligned/unaligned pairs effectively and uniformly. Other ap-
proaches, such as masked grid modeling (MGM) in SOHO,
predict the mapping index for masked grid features in a visual
dictionary [15]. Visual Parsing [18] uses attention weights in
self-attention encoders to mask visual tokens, enabling patch-
level image embedding.

Additionally, inspired by the Vision Transformer (ViT) [10],
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TABLE I: Summary of Popular Models and their Performance of FUNSD Dataset

Model Parameters Modality Image Embedding FUNSD F1 Score

BROS-base [12] 110M T+L None 83.05
LayoutLM-base [13] 160M T+L+I (R) ResNet-101 (fine-tune) 79.27
SelfDoc [6] - T+L+I (R) ResNeXt-101 83.36
UDoc [22] 272M T+L+I (R) ResNet-50 87.93
DocFormer-base [3] 183M T+L+I (G) ResNet-50 83.34
LayoutLMv2-base [14] 200M T+L+I (G) ResNeXt101-FPN 82.76
LayoutLMv3-base [23] 133M T+L+I (P) Linear 90.29

BROS-large [12] 340M T+L None 84.52
LayoutLM-large [13] 343M T+L None 77.89
DocFormer-large [3] 536M T+L+I (G) ResNet-50 84.55
LayoutLMv2-large [14] 426M T+L+I (G) ResNeXt101-FPN 84.20
LayoutLMv3-large [23] 368M T+L+I (P) Linear 92.08

Note: “T/L/I” denotes “text/layout/image” modality. “R/G/P” denotes “region/grid/patch” image em-
bedding.

modern latest models have shifted away from CNNs toward
using self-attention networks for extracting visual features,
improving computational efficiency [16]–[18]. ViLT [11], for
instance, learns visual features using a lightweight linear layer,
reducing both model size and runtime. Table I summarizes the
comparison of state-of-the-art models in this domain, high-
lighting differences in model size, modalities used, image em-
beddings, and their performance on the FUNSD dataset [24].
LayoutLMv3, with linear patch embeddings, demonstrates
superior performance, achieving the highest F1 score among
models that use text, layout, and image modalities.

The current study builds upon these advancements to
address the specific challenge of visually complex, multi-
line documents. While existing models such as LayoutLMv3
perform well on various tasks, they struggle with multi-line
entities, underscoring the need for more advanced techniques
in visual document understanding.

III. METHODOLOGY

The research proposes a method to extend the capabilities
of a document comprehension model, in which the Lay-
outLMv3 framework has been used. To address the challenges
of interpreting visually complex multi-line documents, the
model’s capacity is enhanced by incorporating 2D positional
embeddings of image segments and implementing a multi-
stage transformer approach. This development is designed to
improve the model’s ability to represent spatial configurations
within documents while ensuring computational efficiency.
Additionally, Explainable AI (XAI) techniques are leveraged
to provide transparency and interpretability, offering deeper
insights into the model’s decision-making processes, particu-
larly when handling visually rich documents. Fig. 2 shows the
graphical overview of our proposed methodology. Each step
is elaborated in the subsequent sub-sections.

A. Multimodal Transformer

1) Image Embedding with 2D Positional Embeddings: The
original LayoutLMv3 uses position embeddings to represent
the locations of image patches but struggles with capturing

spatial relationships between them. To address this, our pro-
posed method incorporates 2D positional embeddings, using
both row and column embeddings to more accurately encode
the spatial structure of documents. In this approach, the
document image is divided into non-overlapping patches based
on a defined patch size. For instance, a 224 × 224 image
segmented with 16 × 16 pixel patches results in a 14 × 14
grid. This is done using a 2D convolutional layer with the
kernel size and stride set to the patch size, ensuring spatial
consistency in patch extraction. A different embedding matrix
is generated for the grid, one embedding matrix for each set of
row and column positions. The embedding matrix for the row
position embeddings has a form of [num rows, embed dim],
implying that each row in the grid is assigned a different
embedding vector of size embed dim. Similarly, the embed-
ding matrix for column position embeddings takes the form
[num cols, embed dim], such that each column in the grid is
assigned an embedding vector of size embed dim accordingly.
In other words, it means that every coordinate (i, j) in the
grid is uniquely defined by a combination of the row position
embedding vector, row pos embed[i], and the column position
embedding vector, col pos embed[j]. This results in a process
where to get the embedding vector for the patch at position
(i, j) in the grid, one either concatenates or performs the
sum of these two particular embedding vectors; hence, every
coordinate in the grid gains a unique embedding depending
on its row and column positions. During the forward pass, the
corresponding row and column position embeddings are added
to each patch embedding. Specifically, for a patch at position
(i, j), its final embedding is computed as shown in eq. 1.

patch embeddingi,j =patch embeddingi,j
+ row pos embed[i]
+ col pos embed[j]

(1)

This addition helps the model to understand the relative
positions of patches more effectively, providing richer spatial
context.

2) Multi-Stage Transformer Network: The initial Lay-
outLMv3 model employs a singular extensive Transformer net-
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Fig. 2: The proposed model architecture for multimodal document understanding begins by using OCR to extract text and
segment the image into patches. Text and image patches are then embedded with 2D positional embeddings to capture spatial
relationships. These embeddings are processed through a multi-layer Transformer, designed to identify patterns and enhance
information. The final output categorizes various entities present within the document.

work to handle all embeddings, which could pose significant
computational demands and potentially overlook hierarchical
document patterns efficiently. To address these challenges, we
advocate for a multi-stage Transformer methodology. Here,
the model is segmented into several stages, each comprising
multiple Transformer layers. The early stages concentrate on
identifying fundamental patterns, while subsequent stages pro-
gressively refine intricate details. This hierarchical processing
framework enhances both computational efficiency and overall
model performance. The Transformer network is structured
into multiple stages, with each stage encompassing a subset
of the overall Transformer layers. For instance, in a network
composed of 12 layers divided into 3 stages, each stage would
consist of 4 layers. The input embeddings are processed se-
quentially through each stage. The initial stages are responsible
for capturing basic patterns and spatial relationships, while
the later stages focus on refining these representations. Each
stage receives the output from the preceding stage as its input,
enabling progressively finer processing of the embeddings.
Upon completion of the final stage, the processed embeddings
undergo global pooling, employing average pooling, to pro-
duce a fixed-size representation. Finally, a classification layer,
typically comprising a fully connected layer followed by a
softmax activation, is utilized to predict the final output.

B. Explainable AI (XAI)

For explainability, we employ the Local Interpretable
Model-agnostic Explanations (LIME). LIME is an inter-

pretability method designed to shed light on the predictions
made by complex machine learning models. Its primary ob-
jective is to improve transparency and confidence in black-
box models by offering human-understandable rationales for
specific predictions. LIME achieves this by approximating
the decision boundary of a model around a given instance
through the construction of interpretable surrogate models that
faithfully represent the local behavior of the original model.
LIME distinguishes itself as a multimodal explanation tool due
to its capability for adaptation into multiple data modalities,
which include textual and visual data. This flexibility has high
utility in situations where the models handle multiple forms
of data, normally images with textual information. A good
example is that the LIME technique can explain how changes
in parts of images or specific words in the text influence
the model’s output. This makes LIME highly important for
enhancing the interpretability of complex multimodal models,
whereby researchers can understand how different elements
affect the decisions made by a model across diverse datasets.

IV. EXPERIMENTS

A series of well-structured experiments were systematically
conducted to thoroughly investigate the problem. These ex-
periments were meticulously designed to provide a detailed
and comprehensive analysis. The following section offers an
overview of the experiments performed.
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A. Dataset

The dataset used for the experimentation is known as
FUNSD, or Form Understanding of Noisy Scanned Docu-
ments focuses on interpreting scanned forms under challenging
conditions [24]. FUNSD consists of 199 documents carefully
annotated with 9,707 semantic elements, derived from the
RVL-CDIP dataset. The main challenge for models using
the FUNSD dataset is semantic entity labeling, where each
entity is categorized as “question”, “answer”, “header”, and
“other”. The FUNSD dataset is split into training and test sets
consisting of 149 and 50 samples, respectively. Our model
aims to classify semantic entities in FUNSD by treating each
form as a collection of interconnected semantic entities. In this
context, a semantic entity refers to a group of terms that share
similar semantic and spatial relevance. Each semantic entity is
characterized by several features: a unique identifier, a label
indicating whether it is a “question”, “answer”, “header”, or
“other”, a bounding box, connections to other entities, and a
list of constituent words.

B. Hyperparameter Tuning

In our experimentation, we utilized the
”microsoft/layoutlmv3-base” checkpoint. We systematically
explored the effects of varying hyperparameters, with a
particular emphasis on batch size and learning rate. The
outcomes provided valuable insights into model performance,
summarized in Table II. Notably, the highest F1 scores of
90.64% and 90.71% were achieved with batch sizes of 10
and 12, respectively, both using a learning rate of 1 × 10−5

and training steps of 1000. Conversely, the lowest F1 score of
89.59% was observed with a batch size of 14. These findings
highlight the intricate relationship between hyperparameters
and model efficacy, suggesting avenues for further refinement
and optimization. Table II delineates the performance metrics
for four distinct labels: Question, Answer, Header, and Other.
Notably, as the batch size increases, the F1 scores exhibit
a fluctuating trend across the different labels. For instance,
the Question label attains its highest score of 96.2 when
the batch size is set to 10, whereas the Header label yields
its maximum score of 60 at batch sizes of 8, 10, and 12.
Conversely, the Answer and Other labels demonstrate more
varied behavior, with fluctuations observed across the range
of batch sizes.

TABLE II: Impact of Batch size on F1 scores of each Label

Batch Size Question Answer Header Other Overall
2 93.5 99.1 42.8 90.5 89.76
8 90.69 93.96 60 78.26 90.55

10 96.2 92.1 60 75.45 90.64
12 91.7 93.6 60 76.59 90.71
14 90.69 93.96 54.5 75.56 89.59

C. Image Explainer

As discussed earlier, we used LIME to help understand the
predictions made by image classification models. Initially, we

used lime_image for LIME explanations. LIME explana-
tions were computed and visually represented through iteration
over each label, aiding in the interpretation of the model’s pre-
dictions. During the visualization phase, the function generated
subplots for each label: the LIME explanations accentuated
pertinent areas for the current label’s prediction, and marked
boundaries delineating regions contributing to the explanation.
This systematic approach enabled us to understand the ra-
tionale behind the model’s predictions across various labels
within an image classification task.

D. Upsampling the Data

Experimental analysis revealed that the label “Header” has
significantly fewer instances compared to other labels. This
imbalance can skew model learning, resulting in suboptimal
performance, especially in tasks where accurate representation
of all label categories is essential. To address this issue, an
upsampling technique is employed. This technique involves
synthetically increasing the number of instances in the mi-
nority classes to match the count of the majority class. The
objective is to create a more balanced dataset where each
label category has a similar number of instances, ensuring fair
and effective model training. The model iterates through the
categorized examples, identifying classes with fewer instances
than the desired count. For such classes, random instances
are duplicated until they reach the predetermined count. This
iterative process ensures that each label category achieves
equal representation within the dataset. After upsampling,
the examples are shuffled to mitigate any potential biases
introduced during the sampling process.

TABLE III: F1 score of Labels after Upsampling

Label Answer Question Header Other Overall
F1 Scores 93.4 91.85 63.5 90.5 90.71

Table III presents F1 scores across various label categories
after applying an upsampling technique. Each category along
with an overall score, showcases the model’s ability to classify
instances accurately. F1 scores range from 63.5 for “Header”
to 93.4 for “Answer”, demonstrating the effectiveness of the
model in differentiating between label categories. Specifically,
the application of upsampling notably improves the “Header”
category, increasing its F1 score from 60 to 63.5. The overall
F1 score of 90.71 provides a comprehensive view of the
model’s performance across the entire dataset.

V. RESULTS

A. Analysis of Hyperparameter Tuning

The graph displayed in fig. 3 provides a comprehensive
view of how hyperparameter tuning affects the overall F1
score. The model’s performance is significantly influenced by
the batch size. As depicted in the graph, the model performs
optimally with a batch size of 12, achieving an F1 score of
90.72. Experiments were conducted to evaluate the model’s
effectiveness for different labels: Header, Question, Answer,
and Other. Extensive tests were performed using consistent
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parameters, including a learning rate of 1×10−5, 1000 training
steps, and varying batch sizes of 2, 8, 10, 12, and 14. The
F1 score was calculated for each label, and the results were
analyzed to determine the optimal batch size. The label Answer
showed the highest F1 score of 99.1 at a batch size of 2,
indicating that the model performed exceptionally well in iden-
tifying answers. The Question label, on the other hand, had a
maximum F1 score of 96.2 at a batch size of 10, implying that
the model was able to identify questions with a high degree
of accuracy. However, it is worth noting that the best overall
performance was achieved at a batch size of 12, with optimal
label-wise performance. An in-depth analysis of the label-wise
performance of the model is provided in Figure 3, which
shows that the Header label needs improvement. Therefore,
the model’s performance can be enhanced by improving its
ability to identify headers.

Fig. 3: Impact of Hyperparameter Tuning on F1-Scores.

B. Analyzing the Model’s Ability to Process Image

We employed the LIME explainer to visually highlight
the areas of an image that contribute to the model’s Header
label predictions, focusing on text objects with specific fonts.
These results are presented through marked boundaries on
the image, as illustrated in fig. 4. However, the results show
that the Header label consistently underperforms, with F1
scores ranging from 42.8 to 60.0 across all batch sizes,
indicating a significant limitation in the model’s prediction
accuracy. Our model, enhanced with 2D positional embed-
dings, demonstrated clear improvements in addressing this
issue, particularly in handling spatial information, leading to
more accurate Header predictions.

C. Results of the Comparison with Other Models

Before testing our proposed model’s performance with
SOTA, we want to highlight the progressive performance
improvements across the LayoutLM, LayoutLMv2, and Lay-
outLMv3 models on FUNSD samples. The text, layout, and
image modalities with linear patch features are integrated with
LayoutLMv3, where the CNN backbones are replaced with
simple linear embedding to encode image patches. The form
understanding task, which involves extracting and structuring

Fig. 4: LIME Visualization on Header label

textual content from forms, addresses a sequence labeling
problem to tag each word with a label. The focus lies on the
semantic entity labeling task within the FUNSD dataset, where
each semantic entity is assigned a label such as question,
answer, header, or other. All experiments were perfomed
using the training and test splits comprising 149 and 50
samples, respectively, with officially provided images and
OCR annotations used. In the experiment, LayoutLMv3 is
fine-tuned for 1,000 steps with a learning rate of 1 × 10−5

and a batch size of 12 for FUNSD. With the base model
size, LayoutLMv3 achieves an F1 score of 90.71 on the
FUNSD dataset. Notably, LayoutLMv3 employs segment-level
layout positions, distinguishing it from other approaches that
use word-level layout positions. The results demonstrate that
LayoutLMv3 significantly improves text-centric form under-
standing tasks. Fig. 5 visually represents the header label
depicted in orange, the answer label in green, the question
label in blue, and the other label in lilac. The sample image
is a visually rich scanned document from the FUNSD dataset,
containing elements such as logos, headers, and computer-
written text entities.

D. Results for the Upsampling of Data

The analysis of Table III validates a significant enhancement
in the performance of the Header label, which exhibited
a substantial increase in its F1 score from a baseline of
60.0 to 63.5 after implementing the upsampling technique.
This improvement serves as a compelling testament to the
efficacy of addressing label imbalance within the dataset.
Through the application of upsampling, the representation of
minority classes, such as Header, is augmented, affording the
model a more comprehensive understanding of the intrica-
cies associated with instances labeled as such. Consequently,
the model demonstrates an enhanced capability to accurately
classify instances from underrepresented categories, ultimately
contributing to an overall improvement in performance. This
improvement provides compelling evidence for the effective-
ness of addressing class imbalance within the dataset. By ap-
plying upsampling techniques, the representation of minority
classes, such as the Header label, is increased, allowing the
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Fig. 5: Visualization of progressive improvements in managing complex document structures and layouts across the models
LayoutLM, LayoutLMv2, and LayoutLMv3.

model to better capture the complexities associated with these
underrepresented instances. As a result, the model exhibits
improved accuracy in classifying instances from imbalanced
categories, leading to an overall enhancement in performance.
The substantial increase in the F1 score for the Header label
underscores the importance of mitigating label imbalance. Fo-
cusing on undersampled labels through upsampling enhances
the model’s ability to learn finer details of minority classes,
thereby improving classification accuracy across all labels. The
observed improvement in test accuracy confirms the efficacy of
the upsampling strategy in boosting the model’s performance
on datasets with skewed label distributions.

VI. COMPARISON OF BASE WITH IMPROVED MODEL

This section compares the performance of our proposed
model against various versions of the LayoutLM model in
entity recognition tasks, highlighting the specific enhance-
ments in LayoutLMv3. The LayoutLM models are designed
to understand visually rich documents by incorporating image
region features and spatial layout information. LayoutLMv2
introduced a multi-modal Transformer that integrates text,
visual, and layout data using CNN-based visual encoders
and token-level positional embeddings. LayoutLMv3 further
improves upon this with a spatially-aware self-attention mech-
anism, enhancing its ability to model relationships between
input tokens and their relative positions, thus making it highly
effective for document understanding tasks.

TABLE IV: Entity-wise Performance Comparison of Lay-
outLM Models and Proposed Model.

Model Header Answer Question Overall
LayoutLM 44.5 74.99 77.76 79.27
LayoutLMv2 50.0 91.60 90.88 82.76
LayoutLMv3 (Base Model) 60.0 93.6 90.69 90.29
Proposed Model 63.5 93.4 91.8 90.71
Note: The table represents the F1 scores for each entity.

While models like LayoutLMv3 and ViT rely on 1D posi-
tion embeddings for patches that offer only linear position in-
formation, this enhanced model uses 2D position embeddings

(a) Base Model Result (b) Improved Model Result

Fig. 6: Qualitative performance comparison of our proposed
model with LayoutLMv3 showing improved recognition of
multi-line headers in documents.

to capture both row and column information, offering richer
spatial context. This enhancement enables the model to better
represent document layouts and structures, which translates
into more accurate information extraction and layout analysis.

In contrast, the model focuses on efficiency by using a
multi-stage Transformer network that hierarchically processes
embeddings. This is supposed to be computationally intensive
for single large transformer networks, which have limited hi-
erarchical pattern recognition. Secondly, this model integrates
2D position embeddings, differentiating between the position
of each row and column to capture the accurate location of
each patch within a document. It segments the document image
into non-overlapping patches using a 2D convolutional layer,
while separately initializing two different embedding matrices
for the row and column positions. The multi-step process
makes it more computationally efficient; hence, the model can
learn more complicated representations, accelerate processing
for long documents, and optimize resource utilization, which
is suitable for real-time applications.
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TABLE V: Comparison of the Proposed Model with SOTA

Model Modality Image Embedding F1 Scores
LayoutLMbase T+L+I (R) ResNet-101 79.27
SelfDoc T+L+I (R) ResNeXt-101 83.36
LaoutLMv2base T+L+I (G) ResNeXt101-FPN 82.76
DocFormerbase T+L+I (G) ResNet-50 83.34
LayoutLMv3base T+L+I (P) Linear 90.29
Proposed Model T+L+I (P) Linear + Positional 90.71

Fig. 6 and Table IV illustrate the enhanced results of the
proposed model as compared to base models of LayoutLM,
especially highlighting a significant difference in detecting the
“Header” label more accurately in our case. Comparison of F1
scores among several state-of-the-art models as shown in the
Table V also shows that the proposed model has the highest
score compared to other SOTA models such as DocFormer
and SelfDoc, in addition to LayoutLM versions.

VII. CONCLUSION

Our proposed enhancements to the LayoutLMv3 archi-
tecture significantly improve both spatial understanding and
computational efficiency for visually rich document under-
standing. By using 2D positional embeddings for image
patches, the model captures spatial information from both
rows and columns, enhancing its ability to handle complex
document layouts. The multi-stage Transformer architecture
further strengthens this capability by hierarchically encoding
sophisticated patterns, improving both accuracy and efficiency
in processing long documents. These advancements make the
model particularly effective for tasks like form and receipt
recognition. The results demonstrate its potential for future
applications in data extraction, document accessibility, and
usability across various sectors.
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