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Abstract. Recent advances in training large language models (LLMs)
using massive amounts of solely textual data lead to strong generalization
across many domains and tasks, including document-specific ones. On the
other hand, there is a trend to train multi-modal transformer architec-
tures tailored for document understanding that are designed specifically
to fuse textual inputs with the corresponding document layout. This in-
volves a separate fine-tuning step for which additional training data is
required. At present, no document transformers with comparable gen-
eralization to LLMs are available. This raises the question which type
of model is to be preferred for document understanding tasks. In this
paper we investigate the possibility to use purely text-based LLMs for
document-specific tasks by using layout enrichment. We explore drop-
in modifications and rule-based methods to enrich purely textual LLM
prompts with layout information. In our experiments we investigate the
effects on the commercial ChatGPT model and the open-source LLM So-
lar. We demonstrate that using our approach both LLMs show improved
performance on various standard document benchmarks. In addition, we
study the impact of noisy OCR and layout errors, as well as the limita-
tions of LLMs when it comes to utilizing document layout. Our results
indicate that layout enrichment can improve the performance of purely
text-based LLMs for document understanding by up to 15%, and by 6%
on average compared to just using plain document text. In conclusion,
this approach should be considered for the best model choice between
text-based LLM or multi-modal document transformers.

Keywords: Document Understanding · Large Language Models · Lay-
out Understanding · Prompt Enrichment

1 Introduction

In today’s business environment, companies face the problem of an ever-growing
amount of digital documents that need to be processed. The possibilities of smart
⋆⋆ Corresponding author
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devices to capture documents has lead to new digital business models that make
heavy use of camera captures, while promising high automation. This induces
a dramatic growth in digitized documents of varying quality that need to be
processed. In addition to document types such as invoices, forms, complaints,
receipts and notices, other, less standardized types of documents are increasingly
important, such as contract documents, business reports or legal texts.

Understanding documents completely necessitates understanding of textual
and visual modalities as well as the comprehension of the spatial relations be-
tween the document’s content elements, which guide the reading process and
are essential for interpretation [1, p. 1]. Recently, automated document image
understanding has taken strides forward: (i) Larger-scale benchmarks that align
with real applications [1, 2, 3, 4] allow for real world evaluation and training.
(ii) Self-supervised pre-training tasks – with which large amounts of data can
be leveraged without the need for hand-crafted annotations – have led to multi-
modal neural models. These models can either take document images and text
(e.g., extracted by OCR) as input [5, 6, 7, 8], or can operate end-to-end from a
purely visual input, essentially also learning OCR in the process [9, 10].

One of the most prominent recent developments in the field of AI has been the
rise of large language models (LLMs) such as OpenAI’s ChatGPT [11]. These
models have been found to excel at various natural language understanding
tasks, and have been instruction-tuned to serve as open-domain problem solvers.
Key to their success is their scale – with large-scale training data and billions
of parameters – which leads to impressive capabilities [12]. In contrast to the
aforementioned multi-modal document comprehension models, traditional LLMs
process only text4. By that the modality of spatial layout, which seems vital for
the processing of documents [6, 8], is partially lost due to its reduction to a text
sequence.

In this study we focus on an LLM-centric document comprehension pipeline
that fuses the text with document layout. First, a document’s content is ex-
tracted with OCR, resulting in a set of words equipped with box geometries.
Second, this information is packaged into a purely textual representation that
encodes both the document’s text and its spatial structure. We will refer to this
step as “verbalization” in the following. Third, the resulting verbalized document
is combined with the task description, resulting in a prompt for a pre-trained
generative LLM, which solves the document comprehension task at hand without
further fine-tuning.

This pipeline offers two benefits: First, it exploits the superior knowledge ca-
pacity and reasoning capabilities of LLMs – which at the present time have been
trained at larger scale and offer larger parametric capacity compared to current
multi-modal document-specific models. Second – which is particularly relevant
for practical applications – the pipeline offers the benefit of simplicity, since it

4 Though there is a recent trend towards multi-modal inputs, we will focus on large
language models in the strict sense here: The model’s input and output are text
sequences.
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involves no model fine-tuning, thereby allowing us to keep a single generalist
model.

Specifically, we focus on the key step of document verbalization, which raises
several interesting questions: How well do LLMs perform at document com-
prehension tasks that involve challenging layout reasoning, even with no/little
information on document geometry? How are LLMs influenced by the way we
feed them document representations and particularly, can we alter the document
representations in a way that allows a LLM to exploit document geometry to
achieve the same performance as a multi-modal model?

We investigate these questions with experiments on several document under-
standing datasets including tasks from the DUE benchmark, SROIE, WebSRC,
and proprietary Key Information Extraction (KIE) datasets (from real-world in-
dustry scenarios). We examine two LLMs, namely ChatGPT3.55 and the open-
source LLM Solar[13]. Overall, we make the following contributions:

1. A novel rule-based approach that enriches the prompts of existing text-
centric LLMs with spatial structure information from documents. The ap-
proach works across various kinds of documents and tasks and can be applied
to various layouts without the need for fine-tuning.

2. A set of comprehensive experiments using both research and real-world doc-
ument datasets as well as commercial and open-source models. We cover
various document-specific tasks, different reading orders, and effects of noise
being added to the OCR data.

3. Besides quantitative results, we also explore LLMs’ limitations when it comes
to interpreting document layout in-depth on particularly challenging cases,
for which we have annotated a subset of SROIE. 6.

2 Related Work

LLMs: Language models built upon the attention-based transformer architec-
ture [14] are probably among the currently most intensely studied models in AI.
Due to the high growth they experienced, often involving several billion param-
eters, the capacity and reasoning capabilities of these models have rapidly pro-
gressed [12]. In addition to commercial providers such as OpenAI [15], a variety
of open-source models such as Llama 2 [16] or Solar[13] are currently evolving.
Two fundamental types of models are distinguished: (1) Encoders, which gener-
ate representations of input texts and use them to make decisions about texts.
They are equipped with additional head layers that are be fine-tuned to the
specific problem. (2) Decoders that generate text and can be instructed using
prompts without additional training. Recently, the latter paradigm has emerged
as the dominant approach, as the resulting LLMs can serve as generalist agents
for ad-hoc problem solving, without fine-tuning to specific tasks. Instruction
5 gpt-3.5-turbo-1106
6 Our annotated SROIE-Challenge dataset is available for future research, see Sec-

tion 4.1.
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tuning is used as an additional training step to facilitate this: It aims to bridge
the gap between the LLM’s goal of next-word prediction and the user’s goal
of having the LLM follow human instructions. [17]. Accordingly, we focus on
instruction-tuned decoder models in this work.

Multi-Modal Models: Many multi-modal models outsource OCR into pre-
processing and operate on a combined input of document image and recognized
text+geometry [5, 7, 18]: For example, the LayoutLM series, including the most
recent version LayoutLMv3 [19, 20, 21], utilizes a BERT-type transformer en-
coder [22], which feeds on a concatenation of word embeddings and visual patch
embeddings, and is trained with several masked language modeling (MLM) and
word/patch alignment tasks. The model is applied to downstream tasks via fine-
tuning specialied head models. Similarly, DocFormer [23] applies an early fusion
of image and text signals and a pre-training with global text-image alignment.
UDOP [24] follows a generative approach and reconstructs text layout by an
encoder-decoder model.

Other models operate end-to-end, feeding only on the document image and
addressing text understanding in the process: Donut [9] uses an encoder-decoder
architecture, which is pretrained to recognize the document images’ text on large-
scale real-world (IIT-CDIP) and synthetic documents. Similarly, Dessurt [25]
integrates OCR as part of its model. Many of the aforementioned papers include
ablation studies demonstrating that models benefit from including geometry
information in the input – when trained accordingly. In this work, we extend
this question to instruction-tuned LLMs.

The work most similar to ours is LATIN-Prompt by Wang et al. [26], who
have recently proposed a combination of a layout-aware document representation
and a task-aware prompting, and have also investigated fine-tuning in the pro-
cess. We extend on this work by (1) investigating multiple verbalization strate-
gies, (2) thoroughly treating the prompt templates as a free, dataset-agnostic
parameter to be optimized carefully and independently from the verbalization,
and (3) exploring the limitations of LLMs’ layout reasoning capabilities in more
detail by inspecting challenge cases and evaluating the effect of layout and OCR
inaccuracies.

3 Approach

Figure 1 shows an overview of our approach: Given a document, we extract its
text and corresponding word geometries using off the shelf OCR solutions. The
document is converted into a purely textual representation, using a step we refer
to as verbalization. We propose different verbalization strategies to add geometric
and layout information to the textual document representation (see Section 3.1).
To study the robustness of the verbalization with respect to inaccuracies of OCR
geometries we degrade the OCR before verbalization by either applying noise to
word positions or emulating layout analysis errors. The verbalized document is
then inserted into a prompt template together with task-specific directives, e.g.
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questions to be answered (Section 3.3). The prepared prompt is then fed into an
LLM and the response is parsed from the output.

OCR + 
noise

Scan
word     coords
Tax     (10,3,47,5)
Invoice (51,6,94,7)
...

Raw Document Data
verbali-
zation

noise 
model

verbalization 
strategies

Given the following 
document
“““

“““
What is the price of 
product ...?

Verbalized Document

prompt 
generation

prompt templates
(task-specific)

tax invoice

DESC    QTY   PRICE …
          (RM)

51190030 … 

… 

Prompt

Prompting
+ answer
extraction

LLM
(pretrained)

tax invoice

DESC    QTY   PRICE … 
        (RM)
51190030 … 
… 

Fig. 1: Overview of our approach: Document OCR is converted into a text repre-
sentation using different verbalization strategies (blue). Before verbalization, we
optionally degrade the OCR by applying noise to the spatial position of OCR
geometries (red). The resulting document text representation is then inserted
into a task specific prompt (yellow) and fed into a LLM (green). Finally, the
answers are extracted from the LLM output.

3.1 Verbalizers

We refer to verbalizers as strategies that create a textual document repre-
sentation from an ordered collection of bounding boxes and the text associ-
ated with these boxes. This representation can serve as input to a text-based
LLM. Further, each verbalizer offers a textual description of its output for-
mat to guide the LLM in interpreting the verbalizer’s outputs. We outline
multiple different verbalization strategies in the following. For each, we in-
clude the verbalization of an example word box with the text “TAX INVOICE”
and coordinates (xleft, ytop, xright, ybottom) = (100, 50, 321, 100) and center point
(x, y) = (211, 75):

1. PlainText Serves as a baseline by only adopting the text t without extra
layout information. The text lines retrieved from the OCR are concatenated
using newlines to form the document representation. When no line candi-
dates are available, we concatenate words with spaces.

2. BoundingBox Uses both the bounding box coordinates and the text.
The box geometries are encoded together with the text of each box using a
custom format. Coordinates are rounded to whole numbers and are encoded
as “left”, “top”, “right” and “bottom”. Example:
left:100 top:50 right:321 bottom:100 text:’TAX INVOICE’

3. BoundingBoxMarkup Formats the bounding box coordinates in a
XML style markup format followed by the text. Coordinates are rounded
to whole numbers and are encoded as “left”, “top”, “right” and “bottom”.
Example: <box left=100 top=50 right=321 bottom=100/>TAX INVOICE
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4. CenterPoint Formats both the bounding box center point coordinates
in a XML style markup format followed by the text. Coordinates are rounded
to whole numbers. Example:
<box x=211 y=75/>TAX INVOICE

5. SpatialFormat Uses the geometries to restore the original document
layout via insertion of spaces and newlines. To this end, the characters are
placed on a grid such that their spatial location is similar to that on the
document. Figure 2 shows a example output of the SpatialFormat verbal-
izer. At most 4 consecutive newlines are inserted. This approach is similar
to LATIN-Prompt [26], see section 4.3 for a more detailed comparison.

6. SpatialFormatY Similar to SpatialFormat, but it only encodes spa-
tial information on the vertical dimension, i.e. only newlines are inserted and
no spaces are used for horizontal alignment. At most 4 consecutive newlines
are inserted.

7. PlainHTML Serves as a control run for the WebSRC dataset, where a
structured HTML representation of the document is available. Example:
...<h3 tid=“3”>TAX INVOICE</h3>...

When verbalizing with SpatialFormat and SpatialFormatY, each page is
verbalized individually. The resulting page verbalizations are then concatenated
with an empty newline.

 
 

(481500-M) 

    C W KHOO HARDWARE SDN BHD 

              NO.50 ,JALAN PBS 14/11 , 
     KAWASAN PERINDUSTRIAN BUKIT SERDANG, 

       TEL : 03-89410243    FAX : 03-89410243 

            GST REG NO. : 000549584896 

               TAX INVOICE 

 INVOICE NO.    : CR 1804/1627 
 DATE        : 26/04/2018 12:16:15 PM 

 CASHIER NO.    : TEE 

 COUNTER NO.   : C2 

 PRINTED DATE   : 26/04/2018 12:14:49 PM 

 ITEM NAME     QTY   UNIT PRICE     AMOUNT 
 50MM X 3PCS 'TAKKA' K.A PADLOCK @ SET 

                 1       80.00        80.00 SR 

 1 ITEM(S)         TOTAL (MYR) :         80.00 

                  GST @ 6% :         4.80 

               NET TOTAL (MYR) :         84.80 
                 ROUNDING ADJ. :          0.00 

      NET TOTAL ROUNDED (MYR) :        84.80 

 CASH                        :        84.80 

 

(481500-M) 

C W KHOO HARDWARE SDN BHD 

NO.50 ,JALAN PBS 14/11 , 
KAWASAN PERINDUSTRIAN BUKIT SERDANG, 

TEL : 03-89410243 

FAX : 03-89410243 

GST REG NO. : 000549584896 

TAX INVOICE 
INVOICE NO. 

: CR 1804/1627 

DATE 

: 26/04/2018 12:16:15 PM 

CASHIER NO. 
: TEE 

COUNTER NO. 

: C2 

PRINTED DATE 

: 26/04/2018 12:14:49 PM 
ITEM NAME 

QTY 

UNIT PRICE 

Fig. 2: Verbalization strategies on a random sample from the SROIE dataset:
original (left), SpatialFormat (middle) and PlainText (right).

3.2 Noise Models

The OCR geometries generated by common OCR systems are subject to fluctua-
tions and are rarely perfectly aligned with each other. To study the robustness of
the verbalization strategies with respect to inaccuracies in the order and spatial
relationship of layout elements, we optionally apply noise models to the OCR
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output before feeding it into the verbalizers. Each noising model takes an or-
dered list of bounding boxes as input, where the initial order corresponds to the
reading order of the underlying OCR engine.

1. NONE: Identity function. The coordinates and text of the OCR are not mod-
ified (serves as a control run).

2. TRANSLATE: Degenerates each bounding box bi according to the formula
(x0, y0, x2, y2) → (x0+∆x

i , y0+∆y
i , x2+∆x

i , y2+∆y
i ), where ∆x

i , ∆
y
i ∈ [−20, 20]

are uniformly sampled random numbers per box. Note that 20px is approx-
imately the average character width in our data, such that two boxes can
move up to 40px (or two letters) relative to each other.

3. SHUFFLE: Shuffles the list of bounding boxes randomly.
4. NEAREST_NEIGHBOR: Reorders a list of bounding boxes by selecting for each

bounding box a successor box which is closer than min_char_height and
min_char_width pixels. When there are no or multiple candidates, the suc-
cessor box is selected under consideration of the original order of the boxes.
The procedure emulates the natural reading order mode of Microsoft OCR7

and tends to read tables column wise instead of row wise, as the spacing be-
tween consecutive rows is usually smaller than between consecutive columns.

3.3 Prompts

To prompt the LLM, we insert the verbalized document into a task-specific
prompt template. As this prompt template influences quality just like the ver-
balization (order, wording and phrasing appear to matter), we aim to rigorously
separate the effects of prompting from the effects of verbalization. To determine
a suitable prompt structure, we subdivide each prompt into common building
blocks and determine an optimal composition. Following known guidelines for
prompt creation [27], we generate 10 different prompt structures and evaluate
them on a small subset of our data. These structures differ in their ordering of
the individual building blocks and are evaluated using a Question Answering
(QA) task on the SROIE Challenge dataset (see Section 4.1).

Our prompts are divided into four components: DOCUMENT corresponds to the
verbalized document representation. TASK encodes the task to solve. FORMAT de-
scribes the format used for verbalization. Finally, OUTPUT describes the expected
output format using an example. We identified two patterns A,B to work best:
DOCUMENT TASK OUTPUT (pattern A) and DOCUMENT TASK FORMAT OUTPUT (pat-
tern B). Based on these two structures, we create prompt templates for the tasks
KIE, QA and NLI (natural language inference). For efficency reasons, we group
multiple questions (QA), statements (NLI) or keys which are to be retrieved
(KIE) into a single prompt. For QA and NLI samples that contain multiple
questions to be answered, we enumerate those starting with 0. Figure 3 shows
an example for QA prompt B with multiple questions.8.
7 This behaviour of natural reading order mode of Microsoft OCR has been shown

empirically through our experiments.
8 Please refer to Appendix A for a comprehensive overview of the prompt templates
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$$$ 

<<<CONTENT>>> 

$$$ 
 

From the above document, which is enclosed by "$$$", answer the  

following questions: 

(0) which country had the most cyclists finish within the top 10? 

(1) who was the first cyclist to finish? 

(2) who came in first in the general standings? 
 

In the document, the original layout was attempted to be restored  

via insertion of spaces and newlines. 
 

The questions are numbered, e.g. "(0)". 

Write the answers into a JSON dictionary and use the question  

numbers as keys and as datatype string.  

Here is an example of the expected JSON format: 

{ 

    "0": <ANSWER_TO_QUESTION_0>, 

    "1": <ANSWER_TO_QUESTION_1>, 

    ... 

} 

Fig. 3: Example for QA prompt B with three questions. Pattern B structure is:
DOCUMENT (black), TASK (blue), FORMAT (orange) and OUTPUT (green).

3.4 Answer Extraction

Due to the probabilistic nature of LLMs as text generators, their outputs are not
guaranteed to conform with the requested format. To ensure good readout of the
answers, we process the output as follows: (1) We request a single JSON object
which assigns the answers to the respective enumeration numbers (QA, NLI) or
keys (KIE). (2) Given a single valid response object we parse the answers for the
questions. (3) Given multiple valid response objects we choose the object with the
most answers for the questions asked. (4) We use the enumeration number (QA,
NLI) or the key (KIE) to extract a specific answer from the selected object. (5) If
no valid JSON object is returned, we do not generate any answer. See Figure 3
for an example of the output format specification.

While the generation of JSON works reliably in most cases, LLMs will oc-
casionally generate output that does not parse to valid JSON objects. Edge
cases that we observed during development involve JSON objects which con-
tain the correct value but a hallucinated key, e.g. price_of_green_tea in-
stead of answer. Another common mistakes are nested objects, e.g. {“price”:
{“green_tea”: ...} }. In these cases no answer is extracted.

4 Experiments

In the following experiments, we investigate whether suitable verbalization strate-
gies can support LLMs with better layout reasoning and provide exemplary
comparisons of open-source and commercial solutions. In most experiments, we
measure the awareness of the LLM towards layout aspects via accuracy on doc-
ument understanding tasks (which include research benchmarks and industry
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datasets, see Section 4.1). To investigate layout awareness in depth, we also
take a qualitative look at a subset of manually annotated challenge cases (see
Section 4.3).

4.1 Datasets

DUE Benchmark We evaluate our approach using the DUE benchmark [1],
specifically on the datasets DocVQA, InfographicsVQA, TabFact and WikiTable-
Questions with the tasks VQA (DocVQA & InfographicsVQA), TableNLI (Tab-
Fact) and TableQA (WikiTableQuestions). We did not analyze the other datasets
DeepForm, Kleister Charity and PWC, which are also part of the due bench-
mark, as these documents have a very high number of pages9.

WebSRC WebSRC [28] is a collection of 360K question-answer pairs, which
are collected from 60 different websites spanning 11 different domains. Besides
the QA pairs the dataset also consists of web page segments, where each con-
sists of a simplified version of the source HTML, a screenshot and a JSON file
which contains additional spatial and layout information. Due to difficulties in
retrieving text level bounding boxes from the JSON and HTML data, we manu-
ally perform OCR on the screenshots and use this data for further evaluation.10
Only this dataset uses the PlainHTML verbalizer with the given HTML.

SROIE and SROIE Challenge SROIE [29] is a collection of 973 scanned
receipts and the corresponding OCR results.11 The task of the dataset is KIE
with 4 keys to be extracted for each sample: company, date, address and total.

The original SROIE asks for the same 4 keys to be extracted for each sample.
We argue that these keys in particular require no comprehensive understanding
of the document’s layout. For example, the company name is almost always
the first thing written on the receipt, where date and address follow shortly
after. To investigate LLM’s understanding of layout more closely, we created a
challenge set that queries the value of a specific table cell (“How many of the
item ’Green Tea’ were purchased?”) or directly reference the document’s layout
(“Which entity is written above the card expiry date?”). To do so, we manually
annotated 101 samples from the train split of the SROIE dataset to create a
challenging QA dataset12. We categorize the questions into quantity, currency
and string, where the latter refers to any other question that corresponds to
neither of the first two types.

Proprietary KIE Datasets We further evaluate KIE performance on two
proprietary KIE datasets from Insiders Technologies, which both contain partic-
ularly diverse and challenging examples from real world business correspondence:

9 A limitation when working with long documents is the context length of LLMs.
While solutions to this exist, such verbose documents are not part of our scope.

10 This OCR data has been contributed to the authors of WebSRC and is also made
publicly available at https://github.com/46692/WebSRC_OCR

11 We use the revised version of the dataset from https://www.kaggle.com/datasets/
urbikn/sroie-datasetv2

12 Made publicly available at https://github.com/46692/SROIEChallenge

https://github.com/46692/WebSRC_OCR
https://www.kaggle.com/datasets/urbikn/sroie-datasetv2
https://www.kaggle.com/datasets/urbikn/sroie-datasetv2
https://github.com/46692/SROIEChallenge
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ITForms is a collection of 100 multipage form documents in German language,
with 9 keys each. It includes, among others, forms for applying for insurance
benefits, registering vehicles and bank forms, e.g. opening a depot. ITInvoices
is a collection of 104 invoice documents in German language, which are predom-
inantly single page and contain 21 keys each. It includes both business invoices
as well as scanned receipts.

4.2 Setup

LLMs We evaluate our approach with two LLMs: ChatGPT and Solar[13]. For
the evaluation of ChatGPT we use gpt-3.5-turbo-110613 in JSON mode[30],
with a temperature of 0, and enter each prompt in the role of user. We further
evaluate the 8 bit quantized version14 of the recent open-source LLM Solar 70b
on SROIE and SROIE Challenge.15 For Solar each prompt is also entered in the
role of user.16 Unless stated otherwise, experiments use the ChatGPT model
and prompt template A, i.e. the template without verbalizer format description.

OCR Each dataset in the DUE benchmark comes with a selection of pre-
applied OCR engines, where we use microsoft_cv and tesseract as a fallback
in case the former is not available, which is only the case for TabFact. The OCR
results in these datasets contain information about the page and line index, which
is used to join all word bounding boxes on the same page with the same line
index together. Microsoft Computer Vision OCR is used for WebSRC, ITForms
and ITInvoices. We contribute the OCR for WebSRC train and test splits. For
SROIE and SROIE Challenge we use the OCR results delivered with the dataset.

Metrics For evaluation of the DUE datasets we use the official evaluation
framework17 with the metrics given in [1]: ANLS for DocVQA and Infograph-
icsVQA and accuracy for TabFact and WikiTableQuestions. WebSRC is evalu-
ated according to the procedure in the GitHub repository18 and the scores are
given as EM (exact match) and F1 (harmonic mean of recall and precision).
For SROIE, SROIE Challenge, ITForms and ITInvoices we create a type aware
accuracy measure: Each response is assigned to one of four types based on the
expected response, which describe how it is compared to the ground truth (the
procedures described are applied to both the ground truth and the response ex-
tracted from the LLM output): For string values a case-insensitive comparison
is made. date values are parsed via the Python dateparser library19 and then

13 The model was used in the period of November 2023 to February 2024.
14 https://huggingface.co/upstage/SOLAR-0-70b-8bit
15 The evaluation of other datasets had to be omitted due to time constraints.
16 As stated on the Hugging Face model card, Solar expects the role being given in

the prompt. Therefore we used the following wrapper ### User:PROMPT\n\n\n###
Assistant: where PROMPT is replaced with the prompt prepared by our pipeline and
\n symbolizes an empty line.

17 https://github.com/due-benchmark/evaluator
18 https://github.com/X-LANCE/WebSRC-Baseline
19 https://github.com/scrapinghub/dateparser

https://huggingface.co/upstage/SOLAR-0-70b-8bit
https://github.com/due-benchmark/evaluator
https://github.com/X-LANCE/WebSRC-Baseline
https://github.com/scrapinghub/dateparser
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compared for equality. currency values are sanitized via a regular expression20

(RegEx), replacement of commas with dots and then compared for equality.
quantity values are sanitized via a RegEx21 and then compared for equality.
The proposed accuracy measure defaults to EM for string and also for currency
and quantity after units are neglected, i.e. no rounding is performed for the lat-
ter two. In case a value cannot be parsed to its specified type, an empty answer
is returned.

4.3 Results

See Section B in the appendix for a comparison of the token overhead added
by each verbalization strategy. See Section C in the appendix for an analysis
of the effects that the verbalizer format description has on the different prompt
templates A and B.

Dataset Results We report the results on the various datasets with the met-
rics laid out in section 4.2: type aware accuracy for SROIE, SROIE Challenge,
ITForms, ITInvoices; ANLS for DocVQA, InfographicsVQA; accuracy for Tab-
Fact, WikiTableQuestions; F1 and EM for WebSRC. The results in tables 1 and
2 show, that our approach can compete with state-of-the-art models. Specifi-
cally, the results of the DUE benchmark in table 1 demonstrate that the in-
troduction of layout information to the prompt proves beneficial. Our approach
achieves state-of-the-art performance on InfographicsVQA and WikiTableQues-
tions.22 Throughout the benchmark, SpatialFormat proves to be the best ver-
balization strategy on average, with a peak gain of 15% (from 47.7% to 54.9%)
on InfoVQA.23 In comparison to LATIN-Prompt [26], our SpatialFormat ap-
proach results in slightly different formatting (i.e. less inserted whitespace and
also incorporates newlines) but is overall almost identical, thereby confirming
their results. While LATIN uses dataset specific prompt templates, we use task
specific prompt templates.

Table 2 shows that we achieve competitive results for some of the other
datasets. Specifically, our approach achieves the 3rd best F1 score on WebSRC
with the SpatialFormat verbalization.24 The PlainHTML baselines further
shows promising results for HTML formatted document representations, achiev-
ing best performance out of all verbalizations. However, this verbalization strat-
egy is not viable for real world documents, as these would have to exist as
HTML documents in the first place or would introduce a separate layout pro-
cessing model into the pipeline, eliminating the need for our approach. Results on
SROIE show that StructTexT significantly outperforms our approach, demon-
strating the superiority of multi-modal models on the dataset. Notably, Plain-
Text performs best among the verbalizations, which could be explained by the
20 \d+(?:(\.|,)\d1,2)?
21 (?:[ a-zA-Z]*)(\d+)(?:[ a-zA-Z]*)
22 State as of 10th February 2024 according to https://duebenchmark.com
23 Note that questions in InfographicsVQA focus on text rather than on graphics.
24 State as of 10th February 2024 according to [31]

https://duebenchmark.com
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simplicity of the dataset paired with the given OCR line segments, resulting in
simple key-value pairs in most cases. Comparison with the other datasets is dif-
ficult: For our custom SROIE Challenge subset no comparisons exist of course.
While ITForms and ITInvoices are proprietary datasets that do not allow direct
comparison with other approaches, they give us an insight into how the models
operate on real world business documents. These data sets are characterized by
the fact that not all keys have to generate a value. Information is often missing
on real documents and not every key can be assigned to a value. The model
must therefore have sufficient ability to reject a value, i.e. it should only output
a value if it can be found on the document. Our results show that the LLM-based
approaches perform significantly worse on these datasets. We observed that in
most cases the LLMs produce outputs and rarely provide an empty response,
which lowers their overall score in the evaluation. We believe that this problem
can be reduced by clearer instructions in the prompt.

Table 1: Comparison with other models published on the DUE-Benchmark. Un-
derlines denote the best verbalization strategy in the dataset. It shows that our
approach achieves competitive results and even state-of-the-art results on the
two datasets InfographicsVQA and WikiTableQuestions, with an improvement
of 15% compared to the baseline for the former. Further, it is shown that Spa-
tialFormat is the best verbalization strategy among the ones tested.

Model Modality Question Answering Table QA/NLI Avg.
DocVQA InfoVQA WTQ TabFact

BERTLARGE [22] T 67.5 - - - -
Donut [9] V 72.1 - - - -
T5LARGE+2D+U [32] T+L 81.0 46.1 43.3 78.6 62.3
LayoutLMv2LARGE + QG [20] T+L+V 86.7 - - - -
LayoutLMv3LARGE [21] T+L+V 83.4 45.1 45.7 78.1 63.1
UDOP [6] T+L+V 84.7 47.4 47.2 78.9 64.6
LATIN-Prompt (Claude) [26] T+L 82.6 54.5 - - -
Ours PlainText T 76.3 47.7 45.1 68.4 59.4
Ours SpatialFormat T+L 79.8 54.9 47.7 70.1 63.1
Ours SpatialFormatY T+L 76.3 49.6 45.5 70.3 60.4
Ours BoundingBox T+L 74.8 46.4 35.0 68.5 56.2
Ours BoundingBoxMarkup T+L 74.6 45.8 36.2 68.6 56.3
Ours CenterPoint T+L 75.1 47.4 38.2 67.8 57.1

Comparison of ChatGPT to Solar We compare the performance of our
approach when applied to two different LLMs, specifically ChatGPT 3.5 and
Solar70B8Bit. The results in table 3 show that open-source LLMs provide a
viable alternative to commercial solutions for document comprehension using
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Table 2: Evaluation results for SROIE, ITForms, ITInvoices, WebSRC and
SROIEChallenge. Underlines denote the best verbalization strategy for the
dataset. WebSRC results of other models are taken from the official leaderboard
and show that the performance our approach is close to that of the third-placed
model. Proprietary KIE Model refers to an internal model of Insiders Technolo-
gies, which is a multi-modal LLM free approach. ITForms and ITInvoices contain
samples for which not all keys have a value on the documents. While this works
to some extent, it is not properly supported using our current prompt. *For
WebSRC left score is EM and right score is F1.

Model Modality KIE Question Answering

SROIE ITForms ITInvoices WebSRC* SROIEChallenge

SageGPT-small-v0.2 [31] ? - - - 89.1 / 92.2 -
DocPrompt (ErnieLayout-Large) [33] T+L+V - - - 77.4 / 85.0 -
TIE (MarkupLM-Large) [34] T+L - - - 76.3 / 80.5 -
StructTexT [35] T+L+V 98.7 - - - -
Proprietary KIE Model T+L 91.7 86.2 90.1 - -
Ours PlainText T 79.9 68.4 54.5 72.9 / 80.5 81.2
Ours SpatialFormat T+L 77.0 73.9 54.2 74.2 / 80.7 86.1
Ours SpatialFormatY T+L 79.0 69.0 54.6 72.4 / 80.3 81.2
Ours BoundingBox T+L 75.4 64.2 54.1 68.3 / 76.6 72.3
Ours BoundingBoxMarkup T+L 74.3 65.6 53.9 68.1 / 75.9 71.3
Ours CenterPoint T+L 73.3 65.1 51.8 68.9 / 76.9 74.3
Ours PlainHTML T+L - - - 80.0 / 84.1 -

our approach: The performance of both LLMs is similar on SROIE, with So-
lar performing slightly better. On SROIE Challenge, ChatGPT has a lead of
4.8 pp. on average. Further, it is shown that Solar is apparently able to make
better usage of the layout information delivered by BoundingBox, Bounding-
BoxMarkup and CenterPoint verbalizers compared to ChatGPT. While it
is unclear whether SROIE is part of ChatGPT’s training data, we checked the
training data of Solar25 and could find no SROIE data. However, we can assure
that neither of both models has seen the questions of SROIE Challenge during
training.

Noise Model Analysis We evaluate the robustness of our verbalization strate-
gies against noise and layout misinterpretations introduced to the document
data. We simulate this by applying the noise models TRANSLATE, SHUFFLE and
NEAREST_NEIGHBOR (see Section 3.2). For each noise model, the average of the
scores achieved with each verbalization strategy across all datasets is determined.
26 The results presented in figure 4 show that SpatialFormat and Spatial-
FormatY are the least affected by the noise models. Further, it shows that
PlainText is very susceptible to wrong layout interpretation by the OCR sys-
tem.
25 As given under https://huggingface.co/upstage/SOLAR-0-70b-8bit
26 In line with the DUE benchmark, we resort to an arithmetic mean of different met-

rics. [1] For WebSRC, where two metrics are reported, we use the F1 score.

https://huggingface.co/upstage/SOLAR-0-70b-8bit
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Table 3: Evaluation results for the comparison of Solar and ChatGPT 3.5. Un-
derlines denote the best verbalization strategy for the LLM in the dataset. It
shows that open-source LLMs provide a viable alternative to commercial solu-
tions for document comprehension using our approach: Solar performs slightly
better than ChatGPT on SROIE, while ChatGPT has an advantage of 4.8 pp.
on our custom SROIE Challenge set.

Verbalizer Modality SROIE SROIE Challenge

ChatGPT Solar ChatGPT Solar

PlainText T 79.9 76.6 81.2 72.3
SpatialFormat T+L 77.0 76.7 86.1 81.2
SpatialFormatY T+L 79.0 77.3 81.2 79.2
BoundingBox T+L 75.4 76.2 72.3 66.3
BoundingBoxMarkup T+L 74.3 77.7 71.3 66.3
CenterPoint T+L 73.3 76.9 74.3 72.3

Avg. 76.5 76.9 77.7 72.9

Qualitative Analysis: SROIE Challenge We explore the impact of docu-
ment layout on LLMs in-depth on our SROIE Challenge dataset, which features
demanding questions on specific table cells and the relative position of items.
See Section D in the appendix for examples of these challenge cases. We found
the LLM to work surprisingly well, answering 59 of 101 questions with all ver-
balizers and 82 with the PlainText verbalizer. The failures on the remaining
19 samples were related to layout misinterpretations that follow directly from
the limited plain-text verbalization: (i) column-wise order of OCR output in-
stead of a row-wise (ii) delayed table cells, which were placed after all other
cells at the end of a table. (iii) overly complex samples (e.g. tables spanning
over 12 rows and 6 columns) (iv) empty cells, which lead the LLM to wrong
conclusions based on the ordering of the bounding boxes, and (v) neighboring
cells merged to a single bounding box. Especially combinations of these fac-
tors provided challenging cases. Overall, the challenge cases were more reliably
solved by the SpatialFormat strategy (87 out of 101 correct). This indicates –
on a limited number of manually inspected samples – a better resiliency of the
SpatialFormat verbalization with respect to OCR layout misinterpretations.

5 Conclusion

We have investigated techniques for adding layout information to prompts for
instruction-tuned LLMs to enhance document understanding performance. This
approach only requires pre-processing of document text and the prompt without
the need for extra fine-tuning. We achieve higher scores compared to layout-
unaware document representations on 7 out of 9 datasets across different doc-
ument tasks, reaching state-of-the-art results on two datasets and often times
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Fig. 4: Comparison of the noise models for each verbalizer. Values shown are
scores averaged over all datasets. It shows, that PlainText’s performance di-
minishes when the layout is misinterpreted. Further is shown that SpatialFor-
mat and SpatialFormatY verbalizers are the least prone to noise introduced
to the OCR data. Note that they are not affected by changes to the bounding
box ordering, as they operate only using the bounding box coordinates.

yielding results competitive with those of specially trained multi-modal mod-
els. We have shown that our approach works for both commercial as well as
open-source LLMs. A potential threat to validity is that our datasets may have
been part of the training data for ChatGPT and Solar.27 Our results indicate,
however, that the improvements of our approach on the non-public datasets (IT-
Forms, ITInvoices) and the specifically annotated one (SROIE-Challenge), are
in line with the findings on public datasets. The proposed method is particularly
suited for structured documents that make heavy use of spatial alignments and
blanks.

For future research, an interesting subject are recent multi-modal instruction-
tuned LLMs with additional visual input such as GPT-4 [37]. Due to both time
constraints and the higher cost associated with these models, we have focused
on text-only representations in this work. Also, evaluation of the presented ap-
proach on languages with different reading orders (e.g. Arabic) would be of in-
terest. Extending SpatialFormat to handle documents with different reading
orientations and text overlaps would further strengthen the method. Another
obvious direction is the evaluation of a larger number of LLMs (including a
comparison of error cases), which had to be omitted due to time constraints. Of
particular interest is the evaluation of the influence of the number of parameters
on the performance of the proposed method. We also recon that more work is
needed when scaling our solution to multi-page reasoning problems, especially
when the number of pages becomes larger.
27 Solar [13] uses weights of Mistral 7B [36], for which the training dataset is not

publicly available.
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