
Table Structure Extraction with Bi-directional
Gated Recurrent Unit Networks

Saqib Ali Khan1, Syed Muhammad Daniyal Khalid1, Muhammad Ali Shahzad1,2 and Faisal Shafait1,2
1 School of Electrical Engineering and Computer Science (SEECS),

National University of Sciences and Technology (NUST), Islamabad, Pakistan
2 Deep Learning Laboratory, National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan

Email: faisal.shafait@seecs.edu.pk

Abstract—Tables present summarized and structured infor-
mation to the reader, which makes table’s structure extraction
an important part of document understanding applications.
However, table structure identification is a hard problem not only
because of the large variation in the table layouts and styles, but
also owing to the variations in the page layouts and the noise
contamination levels. A lot of research has been done to identify
table structure, most of which is based on applying heuristics
with the aid of optical character recognition (OCR) to hand pick
layout features of the tables. These methods fail to generalize
well because of the variations in the table layouts and the errors
generated by OCR. In this paper, we have proposed a robust
deep learning based approach to extract rows and columns from
a detected table in document images with a high precision. In
the proposed solution, the table images are first pre-processed
and then fed to a bi-directional Recurrent Neural Network with
Gated Recurrent Units (GRU) followed by a fully-connected
layer with softmax activation. The network scans the images
from top-to-bottom as well as left-to-right and classifies each
input as either a row-separator or a column-separator. We have
benchmarked our system on publicly available UNLV as well as
ICDAR 2013 datasets on which it outperformed the state-of-the-
art table structure extraction systems by a significant margin.

Keywords-component; bi directional GRU, table-layouts, UNLV

I. INTRODUCTION

A table contains an ordered arrangement of rows and
columns that are widely used to present a set of facts about
some information [1]. They are widely used in research
articles, data analysis, newspapers, magazines, invoices and fi-
nancial documents. Tables present multiple information points
for a large number of items in rows and columns that are
easy to perceive and analyze. They structure the information
to provide a visual summary of the most valuable information
contained in the document. It is for this reason that the
table recognition systems have captured the interest of a large
number of researchers to make contributions in this domain
over the past two decades.

Tables have numerous layouts which makes it very hard
for conventional feature engineering approaches to decode
table structures generically. These approaches generally rely
on visual features like ruling lines, spacing between different
columns, type of data in the table cells, their relationships
with overlapping neighbors or color encoded cell blocks. They
perform reasonably well on the tables of a particular layout
or a business case but fail to scale across multiple domains.

In the recent years, researchers have greatly improved
the results of computer vision problems by applying deep
learning techniques. Schreiber et al. [2] proposed a deep
learning based approach for recognizing rows and columns of
tables in document images. Their proposed system employs
a semantic segmentation (FCN-Xs architectures) model with
custom tweaking to the hyper-features as well as skip pooling
to enhance the segmentation results. The major limitation of
this method is the way FCN processes the table. Each stride
of an FCN filter maps a portion of the input image pixels to
an output pixel. This fails to capture the fact that the rows
and columns in a table follow a unique repetitive sequence of
in-between spacing and data length as the information of the
next and the previous row-column elements is not taken into
account. Also, the receptive field of the CNN based models
does not process the entire row or column in a single stride. In
this paper, we overcome this limitation by using a sequential
modeling approach. Specifically two bi-directional GRUs are
used. One bi-directional GRU identifies the row boundaries
while the other identifies the column boundaries. Each bi-
direction GRU has its own fully connected layer to classify
the input as either a row-boundary or a column-boundary. Our
approach successfully overcomes the limitations of a CNN
based model and provides a data-driven approach towards a
general, layout independent table structure extraction system.
We have benchmarked our system on publicly available UNLV
dataset [3] where it outperformed T-Recs [4], [5] table struc-
ture recognition system. It is to be noted that no part of the
UNLV dataset has been used in the training process.

The rest of this paper is organized in the following sec-
tions: Section II consists of the related work in table struc-
ture recognition domain. Section III elaborates our proposed
methodology that consists of a pre-processing module and
a classification module. Section IV presents the evaluation
metrics while benchmarking and evaluation of the proposed
algorithm is detailed in Section V. Section VI provides the
conclusive remarks as a guideline for the future work in this
domain.

II. RELATED WORK

A substantial amount of work has been done to identify the
structure of a table both using heuristic-based methods as well
as using deep learning. Kieninger et al. [4], [6], [7] proposed

a system which was one of the earliest successful attempts on
table structure extraction problem called T-Recs. The input to
this system is the word bounding boxes. These boxes are then
grouped into rows and columns using a bottom-up approach
by evaluating the vertical and horizontal overlaps between the
boxes to form a segmentation graph. The major problem in
this approach is that the output depends on a large number
of parameters values that are heuristically set. Besides, the
algorithm fails if the preceding OCR step does not correctly
identify words bounding boxes (for example if the character
recognizer misses dots and commas in numeric data).

Wang et al. [8] proposed a data-driven approach similar to
the X-Y cut algorithm [9] that is based on probability opti-
mization technique to solve table structure extraction problem.
This statistical algorithm uses probabilities that are derived
from a large training corpus. This method also takes into
account the distances between adjacent words and it works
on single column, double column and mixed column layouts.

Shigarov et al. [10] proposed a method that relies on PDF
metadata with information including font and text bounding
boxes. The algorithm uses ad-hoc heuristics for recovering
table cells from text chunks and ruling lines. The algorithm
combines these text chunks into text blocks through a text
block recovery algorithm and then uses a threshold to config-
ure the block vertically or horizontally.

Zanibbi et al. [11] presented a survey for table recognition
systems in terms of interactions of table models, observa-
tions, transformations, and inferences. Their survey answers
questions about what and when some decisions are made by
table structure recognition systems. Furthermore, this survey
outlines the dataset used for the training and evaluation of
these systems.

Jianying et al. [12] proposed a general algorithm for table
structure extraction from an already detected table region.
In their proposed methodology, they have used hierarchical
clustering for column detection. Additionally, the system uses
lexical and spatial criteria to classify headers of tables. They
have used a directed acyclic attribute graph or DAG for
evaluation of table structure extraction.

Wang et al. [13] proposed an automatic ground truth gen-
eration system which can generate a large amount of accurate
ground truth for table recognition systems. They use novel
background analysis table recognition algorithms and an X-Y
cut algorithm for identifying table regions in the document
images. This system takes line and word segmentation results
as input and outputs table cell detection results.

Kasar et al. [14] proposed a technique for table structure
extraction based on query-patterns. This approach is a client-
driven approach in which the client will provide the query
pattern based on the location of key fields in the document.
The input query pattern is then converted into a relational
graph in which the nodes represent the features and the edges
represent the spatial relationship between these nodes.

Shamilian et al. [15] proposed a system that reads layout
of the tables in machine printed form. They have provided a
graphical user interface (GUI) for users to define contextual

rules to identify key fields inside a table. The system can also
be manually retargeted to new layouts by the user. This system
has been applied to more than 400 distinct tabular layouts.

Schreiber et al. [2] proposed a deep learning based approach
for table structure recognition. This system uses semantic
segmentation model with FCN-8 architecture and skip pooling
features to detect rows and columns of a table. Additionally,
they have vertically stretched the table images in order to in-
crease the precision on row detection. Furthermore, they have
used CRF to improve the results of semantic segmentation
model. Siddiqui el al. [16] also proposed a deep learning based
method based on Deep Deformable Convolutional Neural
Network (CNN) for table detection.

In this paper, we have proposed a novel solution for table
structure extraction using a sequential model, assuming that
the table has already been detected using an existing algorithm
(e.g. [17]. In the proposed methodology, the table images are
first pre-processed by applying binarization, noise removal,
and morphological transformation. These transformed images
are then passed to a bi-directional Gated Recurrent Unit (GRU)
recurrent neural network that detects rows and columns in the
table.

III. PROPOSED METHODOLOGY

The proposed method is divided into three modules: Image
pre-processing, a row-column classifier and post-processing.
The pre-processing step plays a crucial role in converting
the table images containing text to natural images that do
not contain textual features. These images are then passed
to the classifier that uses rows and columns as time steps to
classify each row and column. In the post-processing step,
the segmentation space generated by the classifier is parsed to
give a single line prediction of rows and columns. This section
explains each module in greater detail.

A. Image Pre-processing

The first and the foremost step is pre-processing the table
images. This step plays a preliminary role in converting the
raw table images to a simpler form so that the layout or
structure of the table is more apparent. The goal of this
transformation is to increase the efficiency of our classifier
by removing unnecessary detail from the input images.

The images are first cleaned up by removing the ruling lines
and other non-text foreground objects. The cleaned image is
then run through adaptive binarization [18] so that the pixel
intensities are uniform. Once the images have been binarized,
they are resized to a fixed dimension of 1600 × 512 as the
neural network is designed to process fixed size inputs.

After binarization, three iterations of dilation transform are
applied to the resized image using a rectangular kernel. In
the case of column detection, the dilation kernel is a vertical
dilation filter of dimensions 3 × 5 and in the case of row
detection, it is a horizontal dilation filter of dimensions 5× 3.
These dilation operations join the adjacent rows and columns,
which helps the model to pick up the pattern of the row
and the column separators. The transformed images are then

Figure 1. Neural Architecture for row classification: Passing a (1600×512)
pre-processed image to a bi-directional GRU with an input of size (1600×1)
at each timestep. The bi-directional GRU outputs a (512 × 2) vector which
is post-processed to get a single regressed row segmentation boundary.

normalized to have values between 0 and 1 to be fed to the
subsequent recurrent neural network.

B. Model

This section provides details of the proposed methodology
and it is further divided into two parts i) Column Classification
ii) Row Classification. These two tasks are not very different
by nature yet they require different model organization.

The crux of our approach is to identify segmentation space
between the rows and the columns using recurrent neural net-
works. Different architectures of recurrent neural networks are
proposed in the literature. We have selected Gated Recurrent
Unit (GRU) [19], [20] and Long Short-Term Memory (LSTM)
networks [14], [15] for our algorithm because of their ability to
incorporate contextual information without vanishing gradient
problem. The results demonstrate (see Section 3 that GRUs
outperform the LSTMs by a significant margin for both row
and column classification. An analysis of the results showed
that the LSTM networks, due to their inherent complexity, tend
to overfit on the simpler data. The later sections in this paper
will only discuss the approach with GRUs for brevity, as the
approach with LSTMs is quite similar.

The bi-directional GRU takes rows and columns as
timesteps and use the information of previous row-column
elements to predict future ones. This approach provides a
significant improvement over the CNN based models because
of the memory cells in GRUs that learns the pattern of inter-
row and inter-column spacing and the sequence of repetition of
row-column elements effectively. This approach outperformed
Schreiber et al. [2] table structure extraction system based on
semantic segmentation by a significant margin. The architec-
tures for row and column classification are detailed in the
following two sections.

1) Column Classification: The neural architecture for col-
umn recognition classifies each column of the image as either
a column or a whitespace between two columns. The images
are passed one at a time and each image is considered to
be a batch like in stochastic gradient descent (SGD). The pre-
processed input image of dimension 1600×512 within a single
batch is split into 1600 sequences (columns), each consisting

Figure 2. Neural Architecture for column classification: Passing a (1600×
512) pre-processed image to a bi-directional GRU with an input of size (512×
1) at each timestep. The bi-directional GRU outputs a (1600×2) vector which
is post-processed to get a single regressed column segmentation boundary.

of 512 pixel values. We have used a hidden dimension of size
512. The two-layer GRU is initialized with hidden dimensions
(4× 1× 512) corresponding to 2 * number of layers * batch
size * hidden dimension size.

The GRU processes the image as 1600 “timesteps”, each
timestep corresponding to a column with 512 input pixel
values. At each timestep, the GRU has the information about
all the columns to the left and the right (if any) of the current
column, as well as the pixel values contained within the current
column being evaluated. Using this information, the GRU can
learn to identify the gap between the columns as those columns
containing mostly white pixels and having two column regions
on their left and right sides.

The GRU outputs a tensor of shape 1600×512 correspond-
ing to sequence length times hidden dimension. This tensor is
then passed through a fully connected layer which outputs a
1600×2 shaped tensor. This output is finally passed through a
softmax layer which gives the final output of shape 1600× 2,
consisting of binary class probabilities for each of the 1600
columns.

2) Row Classification: The neural architecture for row
detection is a transpose of the column classifier and it classifies
each row of the image as either a row or a whitespace between
two rows. The images are fed one at a time and each image
is considered to be a batch. The pre-processed input image
of dimension 1600 × 512 within a single batch is split into
512 sequences (rows), each consisting of 1600 pixel values.
We have used a hidden dimension of size 1024. The 2-layer
GRU is initialized with hidden dimensions (4 × 1 × 1024)
corresponding to 2 * number of (layers * batch size * hidden
dimension size).

In the case of row classification, there are 512 timesteps with
1600 inputs each. At each timestep, the GRU has information
about all the rows above and below the current row as well
as the pixel values within the current row.

The GRU outputs a tensor of shape 512×1600 correspond-
ing to sequence length x hidden dimension. This tensor is then
passed through a fully connected layer which outputs a 512×2
shaped tensor. This output is finally passed through a softmax

layer which gives an output of shape 512 × 2, consisting of
binary class probabilities for each of the 512 rows.

The last step in the classification is parsing the segmentation
space predicted by the classifier. We take the midpoint of the
segmentation space and applying the logic to drop the leftmost
and the rightmost predictions in the case of columns and the
top and the bottom predictions in the case of rows. This step
regresses the output to a single line prediction of rows and
column separators.

The complete model architectures for row and column
classification are shown in Figure 2 and 1.

C. Training

We used Adam optimizer paired with binary cross entropy
loss function to train our models. A typical table image
contains more rows and columns than the whitespace between
them. Initial attempts at training resulted in a model that
always predicted a row-column element and failed to detect
the whitespace due to this class imbalance problem. So,
we took measures to reduce this class imbalance problem
and applied weighting to our loss function to penalize an
incorrectly predicted row-column element only 66% as much
as an incorrectly predicted whitespace element.

The dataset used for training consisted of freely available
document images downloaded from various sources. The ta-
bles, rows and columns were manually labelled using custom
tools. With a fixed learning rate of 0.0005, we trained the
column classifier for 10 iterations over 323 images and the
row classifier for 35 iterations for 286 images.

IV. PERFORMANCE MEASURES

Various researchers have used different evaluation metrics
ranging from simple precision and recall to more complex
evaluation algorithms. In this paper, we have used the perfor-
mance evaluation algorithm described in Shahab et al. [21] to
evaluate the performance of our model for two main reasons:
i) This metric paints the detailed picture of how the algorithm
performs using six different measures. ii) It is a general
purpose metric that can be applied to any type of segments
such as tables, rows, columns and cells.

The methodology proposed by Shahab et al. [21], starts
with numbering the ground truth segments and the detected
segments. A correspondence matrix is then created with m
rows and n columns where m is the number of ground truth
segments and n is the number of detected segments in an
image. The [Gi,Sj] entry in the matrix represents the number
of pixels in the ith ground truth segment that overlap with
the jth detected segment. |Gi| represents the total number of
pixels in the ith ground truth segment and |Sj | represents
the total number of pixels in the jth detection. Once the
correspondence matrix for an image has been created, we can
define the following measures:

A. Correct Detections

This measure shows the total number of ground truth
segments that have a large intersection with a detected segment

and the detected segment does not have a significant overlap
with any other ground truth segment. That is, for a detected
segment Sj and ground truth segments Gi:

|Gi∩Sj |
|Gi| > 0.9 and |Gk∩Sj |

|Sj | < 0.1 ∀k 6= i

B. Partial Detections

The total number of ground truth segments that have a sig-
nificant intersection with a single detected segment. However,
the intersection is not large enough to be counted as a correct
detection. That is,

0.1 <
|Gi∩Sj |

|Gi| < 0.9 and |Gi∩Sk|
|Gi| < 0.1 ∀k 6= j

C. Over segmentation

The total number of ground truth segments that have a
large overlap with two or more detected segments. An over-
segmented detection means that multiple detected segments
span over a single ground truth. Mathematically,

0.1 <
|Gi∩Sj |

|Gi| < 0.9

holds for more than one detected segments Sj for a partic-
ular Gi.

D. Under segmentation

This is the inverse of over-segmentation i.e. the number
of detected segments that have a large intersection with more
than one ground truth segment. An under-segmented detection
means that a single detection spans over multiple ground truth
segments. Mathematically,

0.1 <
|Gi∩Sj |

|Sj | < 0.9

holds for more than one ground truth segment Gi for a
particular Sj

E. Missed segments

These are the number of ground truth segments that do not
have a large overlap with any of the detected segments. These
are segments that our algorithm should have detected but failed
to do so.

|Gi∩Sj |
|Gi| < 0.1 ∀j

F. False Positive Detections

The inverse of missed segments, these are segments detected
by the algorithm but which are not actually present in the
ground truth. These are foreground pixels that algorithm has
mistakenly detected as segments.

|Gi∩Sj |
|Sj | < 0.1 ∀i

Figure 3 show our model output for some sample images
on UNLV dataset showing correct, over-segmented and under-
segmented detections.

Figure 3. Results of our proposed table structure extraction approach on a few images from UNLV dataset showing examples of correct, over-segmented
and under-segmented detections

V. EXPERIMENTS AND RESULTS

We have used publicly available UNLV dataset [3] for the
evaluation of our approach. The dataset spans a number of
documents of varying layouts and domains including newspa-
pers, research articles, magazines, technical reports etc. There
are 2, 889 images in UNLV dataset [3], out of which there
are 427 images containing at least one table. The dataset
also includes accompanying, manually drawn ground truths
for table boundaries. The ground-truth for columns, rows and
cells was presented in [21]. Since our work is focused on table
structure extraction rather than table detection, we cropped
the tables from the images using UNLV ground truth files,
resulting in 557 tables. We then evaluated our model’s outputs
against the ground truths provided in [21]. We did not use any
image from the UNLV dataset in the training and validation
process of our model and thus all the images were unseen by
the model.

We have benchmarked our approach with T-Recs system by
Kieninger et al. [6], a non-deep-learning based algorithm for
table structure extraction. Our approach provided a significant
improvement in correct column detections, from 40.51% to
55.31% and from 54.98% to 58.45% in the case of row
detection. On the other hand, the number of partial detections
has gone down which is explained by the higher number of
over-segmentations and under-segmentations in our approach
as compared to T-Recs (see Table I and II for comparison
results).

Our proposed solution is also compared with Schreiber
et al. [2] which is the state-of-the-art deep learning based
approach towards table structure recognition. For that purpose,
we used the publicly available ICDAR 2013 table competition
dataset containing 67 documents with 238 pages, since this
dataset was used in [2]. The results of this comparison are
shown in Table III.

The benchmarking results exhibit that our approach out-
performs the existing approaches by a significant margin.
There is an increase in the overall correct detections and a
decrease in segmentation errors and missed detections. From
Table 2 and 1, GRUs outperform LSTMs because of its simpler
architecture that is less prone to overfitting.

VI. CONCLUSION

This paper proposed a novel approach for table structure
extraction using GRU based sequential models for deep learn-
ing. This approach provides a significant improvement over
heuristic algorithms and CNN based models [2], owing to the
powerful representation of the sequence models that capture
the repetitive row/column structures in tables. In the future,
we plan to extend this work to develop a coherent framework
for information extraction from table cells.

REFERENCES

[1] S. Lewandowsky and I. Spence, “The perception of statistical graphs,”
Sociological Methods & Research, vol. 18, pp. 200–242, 1989.

Table I
THE RESULTS OF EVALUATING OUR SYSTEM ON 427 BINARY 300-DPI SCANNED UNLV DATASET PAGES CONTAINING TABLE ZONES. THE FOLLOWING

BENCHMARK IS FOR COLUMN SEGMENTATION.

Accuracy%
Our Approach

Performance Measures T-Recs Bi-directional LSTM Bi-directional GRU
Correct Detections 40.51 49.05 55.31
Partial Detections 18.57 15.13 12.13
Missed Detections 13.50 6.99 3.12
Over Segmented Detections 13.50 18.44 12.14
Under Segmented Detections 5.11 20.55 16.75
False Positive Detections 0.88 1.20 0.08

Table II
RESULTS OF EVALUATING OUR SYSTEM ON 427 BINARY 300-DPI SCANNED UNLV DATASET PAGES CONTAINING TABLE ZONES. THE FOLLOWING

BENCHMARK IS FOR ROW SEGMENTATION.

Accuracy%
Our Approach

Performance Measures T-Recs Bi-directional LSTM Bi-directional GRU
Correct Detections 54.98 51.62 58.45
Partial Detections 12.45 17.13 13.35
Missed Detections 10.69 8.39 2.50
Over Segmented Detections 6.27 4.24 8.33
Under Segmented Detections 7.70 5.30 14.67
False Positive Detections 0.12 0.59 0.15

Table III
COMAPRISON WITH SCHREIBER ET AL. [2] ON ICDAR 2013 DATASET USING THE SAME METHODS FOR CALCULATING PRECISION, RECALL AND F1

SCORE AS DESCRIBED IN SCHREIBER ET AL. [2]

Accuracy%
Performance Measures Schreiber et al. Our Approach
Precision 95.93 96.92
Recall 87.36 90.12
F1 Score 91.44 93.39

[2] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, “Deepdesrt:
Deep learning for detection and structure recognition of tables in
document images,” in Fourteenth International Conference on Document
Analysis and Recognition, vol. 1, pp. 1162–1167, 2017.

[3] A. Shahab, “Table ground truth for the UW3 and UNLV
datasets.” http://www.iapr-tc11.org/mediawiki/index.php?title=Table\
Ground\ Truth\ for\ the\ UW3\ and\ UNLV\ datasets, 2010. [On-
line; accessed 7-April-2017].

[4] T. Kieninger and A. Dengel, “A paper-to-html table converting system,”
in Proceedings of document analysis systems, pp. 356–365, 1998.

[5] T. Kieninger and A. Dengel, “Applying the T-RECS table recognition
system to the business letter domain,” in International Conference on
Document Analysis and Recognition, p. 0518, 2001.

[6] T. Kieninger and A. Dengel, “The T-Recs table recognition and analysis
system,” in Document Analysis Systems: Theory and Practice, pp. 255–
270, 1999.

[7] T. Kieninger and A. Dengel, “Table recognition and labeling using
intrinsic layout features,” in International Conference on Advances in
Pattern Recognition, pp. 307–316, 1999.

[8] W. Yalin, I. T. Phillips, and R. M. Haralick, “Table structure under-
standing and its performance evaluation,” Pattern Recognition, vol. 37,
pp. 1479–1497, 2004.

[9] F. Shafait, D. Keysers, and T. M. Breuel, “Performance evaluation and
benchmarking of six-page segmentation algorithms,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 941–
954, 2008.

[10] A. Shigarov, A. Mikhailov, and A. Altaev, “Configurable table struc-
ture recognition in untagged pdf documents,” in ACM Symposium on
Document Engineering, 2016.

[11] R. Zanibbi, D. Blostein, and R. Cordy, “A survey of table recognition:
Models, observations, transformations, and inferences,” International
Journal on Document Analysis and Recognition, vol. 7, no. 1, pp. 1–16,
2004.

[12] J. Hu, R. S. Kashi, D. P. Lopresti, and G. Wilfong, “Table structure
recognition and its evaluation,” in Document Recognition and Retrieval,
pp. 44–55, 2001.

[13] Y. Wang, I. T. Phillips, and R. Haralick, “Automatic table ground truth
generation and a background-analysis-based table structure extraction
method,” in Sixth International Conference on Document Analysis and
Recognition, pp. 528–532, 2001.

[14] T. Kasar, T. K. Bhowmik, and A. Belaı̈d, “Table information extraction
and structure recognition using query patterns,” in 13th International
Conference on Document Analysis and Recognition, pp. 1086–1090,
2015.

[15] J. H. Shamilian, H. S. Baird, and T. L. Wood, “A retargetable table
reader,” in Proceedings of the Fourth International Conference on
Document Analysis and Recognition, vol. 1, pp. 158–163, 1997.

[16] S. Siddiqui, M. I. Malik, S. Agne, A. Dengel, and S. Ahmed,
“Decnt: Deep deformable cnn for table detection,” IEEE Access, vol. 6,
pp. 74151–74161, 2018.

[17] A. Gilani, S. R. Qasim, M. I. Malik, and F. Shafait, “Table detection
using deep learning,” in 14th International Conference on Document
Analysis and Recognition, pp. 771–776, 2017.

[18] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of
local adaptive thresholding techniques using integral images,” in SPIE
Document recognition and retrieval XV, vol. 6815, p. 681510, 2008.

[19] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR,
vol. abs/1412.3555, 2014.

[21] A. Shahab, F. Shafait, T. Kieninger, and A. Dengel, “An open approach
towards the benchmarking of table structure recognition systems,” in
Document Analysis Systems, pp. 113–120, 2010.

