
Received 1 September 2022, accepted 10 November 2022, date of publication 16 November 2022,
date of current version 22 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222531

Adversarial Attack Using Sparse Representation
of Feature Maps
MAHAM JAHANGIR 1 AND FAISAL SHAFAIT1,2
1School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
2Deep Learning Laboratory, National Center of Artificial Intelligence, Islamabad 44000, Pakistan

Corresponding author: Maham Jahangir (mjahangir.phdcs17seecs@seecs.edu.pk)

ABSTRACT Deep neural networks can be fooled by small imperceptible perturbations called adversarial
examples. Although these examples are carefully crafted, they involve two major concerns. In some cases,
adversarial examples generated are much larger than minimal adversarial perturbations while in others the
attack method involves an extensive number of iterations making it infeasible. Moreover, the sparse attacks
are either too complex or are not sparse enough to achieve imperceptibility. Therefore, attacks designed
should be fast and minimum in terms of `2-norm. In this research, we used a dictionary learning technique
to generate sparse adversarial examples based on feature maps of target images. We present two novel
algorithms to tune the dictionary learning process and feature map selection. The results on MNIST and
Imagenet show our attack is better or competitive with the state-of-the-art methods. We also compared our
method with sparse attacks recently introduced in literature. As a result, we have achieved comparable attack
success rate when compared to the state-of-the-art with smaller `2-norm. We also tested the efficacy of our
attack in the presence of defense mechanisms and none of the defenses were able to combat the effect of our
proposed attack

INDEX TERMS Adversarial attacks, dictionary learning, sparse representation.

I. INTRODUCTION
Deep Neural Networks have gained a lot of success and
reached human-level performance in image recognition,
detecting faces and objects, autonomous driving, reading
addresses, solving captchas, and many more [1], [2]. The
convolutional neural networks particularly have been useful
since 2012, after giving promising results on Imagenet Large
Scale Visual Recognition Challenge [3]. Since that time
improvements from researchers are coming at a high pace in
the form of a wide range of applications, more complex and
deep architectures, and improving the overall classification
process.

Despite the success of CNN on image recognition tasks,
we still lack in complete understanding of these complex
networks. Szegedy et al. [4] explored the unusual mistake that
deep networks-based classifiers canmake. They can be fooled
by carefully computed images called adversarial images,
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revealing the unstable nature of these architectures. These
images are indistinguishable from humans when compared
to the original images.

This area has received a lot of interest from researchers
and practitioners all over the world. One stream of research
focuses on generating adversarial attacks with the lowest
imperceptibility while the other focuses on creating defenses
for such attacks. The researchers are still working on the
precise inner workings and reasoning of deep networks. The
attacks help understand the internal working of these archi-
tectures and thus motivate extensive research on designing
robust classifiers. For this purpose, a lot of attacks have been
introduced by different researchers in the literature.

Fast Gradient Sign Method [5] and C&W [6] are among
the famous state-of-the-art attack methods. The current main-
stream possesses certain problems: In terms of `2-norm dis-
tortions, the C&W is argued to be the most effective attack
but is slow since it requires thousands of iterations making it
unsuitable for adversarial training too [7]. Researchers have
argued perturbations estimated using the FGSM are much
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FIGURE 1. Block diagram of our approach: it depicts a classifier being
attacked by an adversary which perturbs the input xl by adding feature
map of target image.

larger than minimal adversarial perturbations [8]. Adver-
sarial examples generated by iterative attacks contain a
certain amount of redundant noises that cannot be com-
pletely removed by simply increasing the number of iter-
ations [9]. In light of the above mentioned problems, the
attacks designed should be fast, and minimum in terms of
`2-norm.

Exploiting the internal details of DNNs to generate effec-
tive imperceptible attack is particularly relevant and the
subject of this paper. In this paper, we addressed the
above-mentioned problems using ideas from Sparse Repre-
sentation, Sparse Coding, and Dictionary Learning. Sparse
representation is a linear internal representation of images
using only a few active coefficients making it easy to interpret
and manipulate content-based image indexing and retrieval.
This field uses a dictionary and a sparse linear combina-
tion of the atoms in the dictionary to represent every input
signal. The computation of the representation coefficients X
also remains a non-trivial operation which is solved by the
Orthogonal Matching Pursuit (OMP) which is greedy and has
a fast running time. It has received great interest in machine
learning, pattern recognition, signal processing [10], and has
been successfully applied to image classification [11], image
compression [12], reconstruction, noise reduction [13], face
recognition [14] etc.

Recently, some of the nominal work that focuses on sparse
attacks include Corner Search, Sparse Fool and Greedy Fool.
All these methods are either suffer from high complexity that
they cannot be extended to high-resolution images or perturbs
redundant pixels therefore, not applicable to real scenarios.
Current algorithms are highly complexed NP-hard problems.
The adversarial examples generated by these models usually
consist of high-magnitude noise, concentrated over a small
number of pixels. As a result, the adversarial images become
quite perceptible and might even exceed the dynamic range
of the image. We have tried to address the limitations of
state-of-the-art methods mentioned above as well as recent
sparse methods in this paper. The idea is to mimic the internal
representation of target images. For this purpose, we designed
an attack based on the feature maps from the first layer
of convolutional neural networks. The perturbation designed
using feature maps is added to the original image to attack
the classifier as shown in Fig. 1. The Block Diagram of our
approach shows a classifier being attacked by an adversary
which perturbs the input xl by adding a feature map of the
target image. We have optimized our perturbation vector
using dictionary learning to have a linear, non-redundant,

sparse noise added to the original input image. Feature maps
get the important pixels of a respective image that are used
for classification.

Experiments on MNIST and Imagenet datasets show the
efficacy of the proposed approach in terms of decreased
error and smaller `2-norm even for a one-shot method. The
proposed approach has been applied to both targeted and un-
targeted scenarios.

We have also tested our adversarial images against various
defense methods. The attack is not defended by any of the
defense strategies.

We summarize our contributions as follows:
1) We used ideas from dictionary learning and sparse

coding to generate adversarial attacks. These are the
first attacks based on dictionary learning proposed so
far, to the best of our knowledge.

2) We have tried to overcome the limitations of both state-
of-the-art methods as well as recent sparse attacks.

3) We have also presented novel algorithms to learn tuned
dictionary based on feature maps. These ideas to tune
dictionaries can be extended to other machine learning
problems solved by dictionary learning

4) We presented a comprehensive experimental analysis
to back our approach. A detailed investigation on tun-
ing the dictionary to create an effective attack and then
testing it against various defense methods to prove its
efficacy.

5) We motivate a new area for designing adversarial
attacks.

The structure of the paper is as follows. The related liter-
ature is discussed in Section II. The detailed methodology is
described in Section III followed by the experimental setting
and details in Section IV. The discussion and analysis of
results are tabulated in Section V. Finally, the experiments
regarding defense strategies are explained and analyzed in
Section VI and the paper is concluded in Section VII.

II. RELATED WORK
The vulnerability of neural networks towards adversarial
examples was introduced by authors in [4]. The attacks can
be targeted or un-targeted. In targeted attacks, the adversary
forces the classifier into predicting a specified label, while
any label in case of untargeted.

Among the state-of-the-art in [5] the authors’ proposed
Fast Gradient Sign Method which creates adversarial exam-
ples by computing the sign of the gradient of the loss of the
input images. Later, iterative methods such as Deep Fool [15]
and C&W attacks [6] were introduced. C&W attacks are
considered very strong and effective against defensive dis-
tillation. Universal adversarial attacks were also proposed
early on to fool all kinds of neural networks [16]. Recently,
steganographic universal adversarial perturbations are intro-
duced by [17]. They used a single secret image (computed in
the transform domain) to fool deep architectures. Similarly,
Yahya et al. generated an adversarial attack by selecting a
targeted watermark, using a steganographic approach [18]
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As our work is related to internal representation as well
as sparse attacks, the remaining matter of this section dis-
cusses the relationships to both areas. In [19] the authors used
DNN logits as vectors to represent features and exploited
them to create targeted universal attacks. These perturba-
tions generalize well across different neural networks. They
can be designed using the information of networks like
training data, weights, etc called white-box attacks, or can
be black-box in nature without knowing the architecture,
learned weights, or training data. Moreover, these attacks
are transferable among different architectures, and a lot of
recent literature provides insights into the transferability of
adversarial images [20], [21]. Moreover, authors are moti-
vated to generate attacks that explain the deep representations
of the model rather than fooling it [22]. Shi et. al [23],
recently explained robustness through an adaptive iterative
attack.

More recently, feature maps are used to generate trans-
ferable attacks. In [21] the source image is perturbed by
reducing the distance between layer L activations of a source
image and a target image in a white-box setting. The images
are then fed into the black box model to test the trans-
ferability. Yucheng Shi et al. [9] argued in their research
that there is no refinement mechanism to squeeze redundant
noises in most of the attacks. Thus, their work is based on
adding diversity by using gradient ascent and descent and
then optimizing by filtering out noises of groups of similar
pixels.

The other area of related work is the sparse representation
and sparse attacks. Sparse attacks have been recently intro-
duced in the field of adversarial attacks. Some of the early
sparse attacks in adversarial setting includes JSMA [24],
Sparse Fool [25], Corner Search [26] and Greedy Fool [27].
Sparse Fool [25] disrupts the geometrical properties of
the images whereas, Corner Search [26] aims at mini-
mizing the distance of the perturbation to the original
image.

All these attacks have certain limitations: JSMA [24] is
highly complex and is difficult to apply to high-resolution
images. SparseFool [25] cannot perform a targeted attack
and isn’t sparse enough. In PGD [28] the number of pixels
to be perturbed is defined beforehand therefore, it results in
perturbing redundant pixels and might not be flexible for real
scenarios. [29]

These researches present interesting ideas but are address-
ing different problems. We have used ideas from Sparse
Representation and Dictionary Learning. Sparse Represen-
tation has gained a lot of attention in computer vision
applications. It has wide applications in image reconstruc-
tion, denoising, image inpainting, and many more. Aharon
et al. [30] proposed the K-SVD method to learn the dic-
tionary to achieve sparse representation. As compared to
previous sparse attacks, our work is different as we aim
to discover a dictionary that can optimize the perturbation
vector to achieve performance in terms of smaller `2-norm.
The smaller `2-norm helps achieve imperceptibility one of

FIGURE 2. Top Row (Feature Map Selection):The perturbation vector
K−1(Target Feature Map− Input) is generated from the feature map of
the target image. Middle Row (Tuned Dictionary Learning): The sparse
image is generated by optimizing the perturbation vector through
dictionary learning.Bottom Row(Sparse Adversarial Image): The sparse
noise is added to the original input to generate an adversarial image.

the major limitations of existing work as highlighted above.
We used dictionary learning to add sparse perturbation in
input images which change the minimum important pixels of
the clean image, another limitation highlighted above. It has
been proved through various experiments that Dictionary
Learning was able to overcome the limitations of existing
work. In this paper, we learned the dictionary to optimize
the targeted noises. Our dictionary consists of perturbations
instead of clean images. This is the first time dictionary
learning has been used for this task. However, the sparse
representation has only been used as a defense mechanism
to reduce feature space against adversarial attacks, to the best
of our knowledge [31], [32], [33].

III. METHODOLOGY
In this section, we describe in detail the methodology of the
proposed approach to generate adversarial images. We have
introduced a novel dictionary learning technique that is based
on the feature maps of the image associated with the targeted
label. These sparse representations of feature maps serve as
noise to be added to the original image.

We first formulate the problem in Section III-A. The
methodology for sparse adversarial image generation is then
divided into three phases. The tuned dictionary learning algo-
rithm based on featuremaps is explained in Section III-B. The
computation of the perturbation vector using feature maps
of the target image is explained in Section III-C. Finally,
in the third phase, we generate an adversarial image from
sparse perturbation vectors by the one-shot method explained
in Section III-D. The detailed methodology highlighting all
phases is illustrated in Fig. 2.
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A. PROBLEM FORMULATION
Let X be the image space and Y be the label space. fθ (.) :
X → Y is a classifier parameterized by θ that assigns a label
y to an input image x. Let xl denote the legitimate image to
be perturbed by noise p. We aim to generate an adversarial
example xa = xl +p which is imperceptible from xl but fools
the classifier i.e.:

d(xa, xl) < ε s.t. fθ (xa) 6= yl (1)

d(.,.) is the distance e.g. `2-norm of the difference between the
clean and the adversarial sample, yl is the correct label of the
legitimate input image, and ε is the perturbation scale which
is often set to a very small value to ensure imperceptibility
between xa and xl . In case of targeted attacks:

fθ (xa) = yt (2)

where yt is the target label we want the classifier to predict.
In this work, we consider both targeted and un-targeted labels.
We aim to inject the noise p to make a strong attack by
learning an adverse transformation T (.) such that adversarial
detection-based defense methods should not be able to detect
the attack. The noise is derived from the internal representa-
tion of the image xt associated with the targeted label yt . This
enables the adversary to create an attack with a smaller norm
as opposed to most of the attacks in the literature. Moreover,
most detection-based defense mechanisms detect the attack
based on the redundant noises left by the adversarial attacks.
Therefore, it is desirable to make this transformation T (.)
stronger by preserving the important information required
while limiting the space of adversarial noise. It should further
remove redundant noises and should be difficult to detect by
defense mechanisms.

B. TUNED DICTIONARY LEARNING ALGORITHM
The operator T (p) transforms the perturbation vector derived
from feature maps in close proximity to the local neighbor-
hood of the image by linear projection. Let p be the pertur-
bation vector, xt the image associated with the target label yt ,
we look for the transformation operator T (.) satisfying the
following conditions:

fθ (xl + T (p)) = yt s.t. d(xl + T (p), xt ) < ε (3)

The classifier f assigns the targeted label to the fabricated
input image which is our ultimate goal, given the condition
that T (p) (Transformed feature map of the target) and xt
(image associated with the target label) should be situated
closely. We present the tuned dictionary learning algorithm to
learn this transformation satisfying both conditions. We pro-
pose a feature map-based dictionary learning algorithm to
learn this transformation. The idea is to mimic the internal
representation of the target image. The image associated with
the target label which we want the classifier to predict. So,
we want to learn the transformation that should be close
to the target image. For that purpose, we used the feature
maps of the target image to create perturbation. Sparse rep-
resentation approximates an input signal X by a sparse linear

combination of items from an overcomplete dictionary. Let
the projection of p be T (p) given by:

T (p) = Dα (4)

The projection in our algorithm is learned through a dic-
tionary by the following optimization problem [10]. The
optimization problem solved is a dictionary learning with an
`1 penalty on the components.

min
D,α

1
2
‖ p−Dα ‖22 +λ ‖ α ‖1

s.t. ‖ Dk ‖2= 1 ∀ k ∈ [0, n] (5)

where, p = perturbation signal and λ is a regularization
parameter, and n is the number of dictionary atoms.The
sparsity-inducing `1-norm also prevents learning components
from noise when few training samples are available. The
degree of penalization that is sparsity level can be adjusted
through the α. Small values result in gently regularized
coefficients, while larger values shrink many coefficients to
zero. The squared error between the original and transformed
signal is the basis of tuning the dictionary learning algo-
rithm. Unlike other dictionary learning algorithms that are
used to learn a dictionary of clean images to support the
application of denoising, compression, or inpainting, we learn
the dictionary to optimize the targeted noises. Our dictio-
nary is called an adverse dictionary as it consists of pertur-
bations instead of clean images. We used sampled feature
map selection to improve computational efficiency. We use a
novel feature map selection technique to learn this dictionary
which is explained in the preceding section. The performance
of the dictionary learning algorithm is enhanced by tuning
it after different hyper-parameter selection. The dictionary
learning algorithm tunes these hyper-parameters based on
the squared error. The algorithm runs for a fixed number of
iterations with different values of hyper-parameters: sparsity
level and the number of components. Our experiments show
that the squared error is highly correlated with the selec-
tion of these hyper-parameters. We chose test set images
from the MNIST dataset to conduct these experiments. These
hyper-parameters and their effect is described later in the
section on ablation studies. The detailed algorithm for dic-
tionary learning is provided in Algorithm 1.

C. FEATURE MAP SELECTION TO LEARN THE DICTIONARY
In this paper, we aim to mimic the internal representations of
the target inputs to create our adversarial images. The idea is
to produce an adversarial imagewhose internal representation
matches that of the target input. Sabour et al. tried to do the
same by reducing the Euclidean distance between the source
and the target guide images [34].

The internal representation is captured by using the feature
maps of the target images. These feature maps result in an
output of one filter applied to the previous layer. These filters
also known as kernels, are called feature identifiers. The fea-
turemaps detect low-level features at initial layers of the CNN
and high-level features as we go deep in the architecture.
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Algorithm 1: Tuned Dictionary Learning

Input: P→ Set of all perturbation vectors;
Result: D→ Dictionary
Err → Squared Error between the transformed image
and the original target image ;
T (p)→ Transformed perturbation learned through the
dictionary of a single perturbation vector;
xt → Target Image;
N → No. of iterations ;
Dc→ Current Dictionary ;
D→ Initial Dictionary ;
k → Sparsity ;
n→ no. of atoms ;
Err = 1

N

∑N
n=1 ‖ T (p)− xt ‖2

D = minD,α 1
2 ‖ p−Dα ‖

2
2 +λ ‖ α ‖1 s.t. ‖

Dk ‖2= 1 ∀ k ∈ [0, n] ;
for i < N do

Dc = minD,α 1
2 ‖ p−Dα ‖

2
2 +λ ‖ α ‖1 s.t. ‖

Dk ‖2= 1 ∀ k ∈ [0, n] ;
if Err(D) > Err(Dc) then

D = Dc;

update n;
update k;

Return D

The low-level features are closely related to images, the
high-level are difficult to map to the image. Therefore, we use
feature maps from the first layer of the CNN.

The knowledge about feature maps and kernels to mimic
the internal representation highlighted so far is used in this
paper to generate the perturbation/noises for our adversarial
images. The natural workflow of the CNN applies a kernel on
an image to produce a feature map. We want to add noise in
that image to generate a targeted feature map (feature map of
the image we are targeting). The idea can be mathematically
written as

K (xl + p) = Ft (6)

Therefore, the perturbation vector is given by

p = K−1(Ft )− xl (7)

Here, xl is the legitimate source image, and Ft is the fea-
ture map of the target image xt . Ft is the feature map of a
target image generated by a well-trained network. K is the
pre-learned filter/kernel from the same well-trained network.
K−1 is the deconvolution operation. The effect of deconvo-
lution of CNN layers is discussed in detail in [35]. p is the
perturbation we want to compute. The sparse representation
of this perturbation will be added in the original image as
noise described in detail in Section III-D. This perturbation
is generated using the test data keeping the essence of a
black-box attack where the adversary doesn’t have access to
the training data. We feed these perturbations to learn the
dictionary for sparse representation.

Next, we explain a novel efficient feature map selection
algorithm to improve dictionary learning. Feature Maps pos-
sess information about the important pixels of the image [21].
Likewise, learning a discriminative dictionary is necessary to
improve representation. The traditional approaches often suf-
fer from the problem of local minima. Therefore, researchers
have proposed to learn dictionaries with good representa-
tional power, and better discrimination capabilities for all
classes [13]. Therefore, the idea is to build a dictionary by
selecting important and diverse inputs. We select important
and diverse patches by greedily sampling the test data. The
target image of a particular class is selected for a dictionary
if the `2-norm of that image is greater than a threshold. This
threshold is basically, the mean `2-norm of all the images in a
particular class. This way we get to learn the dictionary with
diverse images. The images of all classes are included and we
try to include asmany diverse images of the same class as pos-
sible. The detailed algorithm is presented in Algorithm 2. The
testing sets are used to sample feature maps. These selected
images are then used to generate feature maps described
earlier in this section. In this way, we learn a discriminative
dictionary and optimize its performance by reducing the size
of the number of atoms with sampling.

Algorithm 2: Feature Map Selection to Learn Dictionary
Result: p→ Selected Feature Map as Perturbation
Input: F → Feature Map ;
S → Testing samples of the selected class ;
K → Pre-defined kernel ;
xl → legitimate source input image;
H → threshold on `2-norm;
H ← 1

N

∑N
n=1 ‖ si ‖2;

for i < |S| do
if ‖ si ‖2> H then

p← K−1(Fi)− xl ;
else

i← i+ 1 ;

Return p

D. SPARSE ADVERSARIAL IMAGE GENERATION
The sparse representation of images has gained growing
interest. In this report, we solve our problem of redundant
noises, and smaller `2-norm by feature map selection-based
dictionary learning. We describe how a sparse representation
framework has been tailored to generate sparse adversarial
images. Since all the required pieces are together we finally
generate adversarial images by adding the desired perturba-
tion vector to the legitimate image controlled by ε given in
(6). The ε determines the magnitude of noise to be added
to the legitimate source image to maintain imperceptibility
and limit the `2-norm of the adversarial image. The final
noise is not a combination of different noises. We propose
a feature map-based dictionary learning algorithm to learn

120728 VOLUME 10, 2022



M. Jahangir, F. Shafait: Adversarial Attack Using Sparse Representation of Feature Maps

this transformation. Sparse representation approximates an
input signal X by a sparse linear combination of items from
an overcomplete dictionary. The projection of p given by
T (p) = Dα, it is mentioned that since we are adding this
transformed (sparse representation) as noise to the original
image so it’s a dictionary of noises. The `2-norm is the cal-
culated difference between the legitimate and the adversarial
image.

xa = xl + εp (8)

The final adversarial image is then fed to the classifier.

IV. EXPERIMENTAL SETTINGS AND RESULTS
We evaluated the proposed attack methodology for both tar-
geted and un-targeted scenarios on MNIST (black and white
handwritten digits) and Imagenet dataset (colored images).
The sparse adversarial attacks are compared with the state-
of-the-art attacks i.e. C&W [6] Corner Search [26] Sparse
Fool [25], Greedy Fool [27] and FGSM [5]. C&W [6] is
considered to generate adversarial examples with minimum
`2 noise, yet it is impractical because of its high number of
iterations [7], [8].

A. METRICS
In this section, we describe various metrics to define the per-
formance of our algorithm. We report the mean and median
`2-norm using the following formulae

d(x, xa) = ‖ x − xa ‖2 (9)

median = median(d(x, xa) | x ∈ X ) (10)

average =
1
N

N∑
n=1

d(x, xa) | x ∈ X (11)

A smaller `2-norm distance indicates a stronger attack
effect and higher transferability [9]. In the ablation, studies
section targeted success rate (TSR) is calculated. The targeted
success rate is the rate at which sparse adversarial images
generated are classified as the target label. The larger the
targeted success rate, the more effective the targeted attack.
Another metric used in the ablation studies section is the
Squared Error distance calculated between the transformed
image and the image associated with the target label given
as: ‖ T (p)− xt ‖2
In the defense evaluation section fooling ratio is recorded

for all the defense strategies. It is the percentage of images on
which the classifier changes its prediction label after they are
perturbed. The high values of the fooling ratio mean that the
attacks are more strong. In this paper, it is shown that even
after applying various defense strategies the fooling ratio of
our proposed attack remains high.

B. MNIST
The training set consists of 50,000 images whereas, the test
set consists of 10,000 images with resolution (28× 28). The
proposed attacks are evaluated onMNIST using a model with

99.25% Top-1 accuracy and an error of 0.04. We trained
the model for 50 epochs with a learning rate of 0.01 using
ADAM optimizer. The model was trained on a simple CNN
architecture consisting of 6 layers. First, starting with 2 con-
volutional layers with 3×3 kernel size, then 2D max pooling
size (2 × 2), followed by dropout (0.25), and finally Flatten
andDense Layers. The total trainable parameters were 55,658
We generated adversarial images using the proposed strategy
with ε = 0.01 for un-targeted and targeted attacks. The
un-targeted images are poisonedwith any perturbation vector.
The 10,000 images from MNIST test data are all used for
evaluation purposes. The experiments are conducted for the
proposed approach as well as state-of-the-art attacks: FGSM,
Corner Search, and C&W. The adversarial robustness toolbox
is used to conduct experiments for FGSMandC&W[36]. The
publicly available original code of corner search was used to
conduct the experiments. The ε = 1 is used for FGSM for
un-targeted and targeted attacks. We did not use the same
values of ε for FGSM because for smaller values (as used
in our case) the method cannot attack the network at all.
Results are reported both for targeted and un-targeted scenar-
ios. For targeted attacks following the methodology from [7]
we generate adversarial images for all classes of MNIST.
This indicated 9 attacks per image. The results are reported
by averaging overall attacks. The error, attack success rate,
mean `2-norm, and median `2-norm are reported in every
case.

C. ImageNet
The Imagenet consists of (224 × 224) sized images from
1000 categories. The proposed attacks are evaluated on Ima-
genet using a pre-trained VGG-19 model with 70.2% Top-1
accuracy and an error of 1.20. The adversarial images
for targeted attacks are created with ε = 0.0001. The
un-targeted are generated with ε = 0.0001 with any sparse
perturbation. We chose 1000 images from its validation set
representing each category of class for evaluation purposes.
The experiments are conducted for the proposed approach
as well as state-of-the-art attacks: FGSM, C&W, Sparse-
Fool and GreedyFool. The experiments for state-of-the-art
attacks are conducted using the library [36] for FGSM and
C&W. The publicly available original implementations of
SparseFool and GreedyFool were used to conduct the experi-
ments. Results are reported both for targeted and un-targeted
scenarios. For targeted attacks, following the methodology
from [7], we generate adversarial images for 10 classes cho-
sen randomly. The results are reported by averaging overall
attacks. The ε = 0.01 is used for un-targeted and ε = 0.9
targeted attacks while conducting experiments for FGSM.
The error, attack success, mean `2-norm, and median
`2-norm are reported in every case. We couldn’t conduct
experiments of corner search on Imagenet due to a lack of
memory resources. It required 113 GiB for an array with
shape (100352, 224, 224, 3). SparseFool-based attacks cannot
be extended to targeted attacks, Therefore targeted attacks
were not applicable in this case.
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FIGURE 3. Left to right: Original image, Feature map, Perturbation vector, and
finally sparse representation of perturbation vector to be used as adversarial
noise generated through our approach for MNIST and Imagenet datasets.

TABLE 1. The classifier’s loss on test data, attack success rate, mean and median `2-norm of the proposed attack compared with the state-of-the-art
attacks on MNIST & Imagenet in un-targeted Scenario. A smaller `2-norm indicates a stronger attack.

D. EXPERIMENTAL RESULTS
We report the mean, and median `2-norm using the formu-
lae described above. A smaller `2-norm distance indicates a
stronger attack effect.

1) UN-TARGETED ATTACK
The results indicate that the proposed attack is effective in
terms of `2-norm when compared to others. Table 1shows the
performance of the un-targeted proposed attack on MNIST
and Imagenet. Themean andmedian values of 0.1 forMNIST
and 0.02 for Imagenet are calculated which is comparable
to the state-of-the-art attacks in case of un-targeted attacks.
The second column shows the error of the classifier. The
greater value of the error indicates a stronger attack. The
loss of classifier is reported in the first column of Table 1.
The third column shows the attack success rate. It’s highest
for our proposed approach, other than corner search but its
`2-norm is much higher than all other approaches. In the case
of Imagenet the FGSM has a higher success rate but at the
cost of a higher `2-norm than all other approaches.

2) TARGETED ATTACK
The results for the proposed targeted attacks are reported in
Table 2. The mean and median value of 0.1 is reported for

TABLE 2. The error of the targeted attack, attack success rate, mean and
median `2 of proposed attack compared with the state-of-the-art attacks
on MNIST and Imagenet in targeted Scenario. A low value of the loss
indicates a stronger targeted attack.

MNIST and 0.17, 0.002 for Imagenet. These are the results
of the Average case where each image is attacked by different
classes of images and in the end, the average result of all
attacks is reported. The second column shows the loss. The
lower the value of loss the stronger the attack is. Our approach
has the lowest value of loss of any state-of-the-art. The values
reported suggesting that our proposed attack performs better
than the FGSM method and is as good as C&W. Although
C&W is a very strong attack, it is computationally very
expensive.We computed the run-time of an un-targeted C&W
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attack to be 4,303 seconds for MNIST, on a machine with
an Intel(R) Core(TM) i7-7th generation CPU and 8GB of
RAM. In contrast, the run-time for our proposed un-targeted
attack is 245 seconds on the same machine. Hence, C&W
attack is an order of magnitude slower than the presented
method.

The third column in Table 2 records the attack success rate.
Here an error with a low value implies a stronger targeted
attack. In the case of MNIST, the attack success values are
quite promising for FGSM and C&W. This is because the
epsilon value is kept very low for FGSM. The C&W is the
most effective targeted attack and reports the lowest(best)
values for mean and median `2, but it needs a lot of iterations
which makes them infeasible [7].

In a nutshell, the proposed method is competitive with
state-of-the-art in terms of performance. The C&W outper-
forms in terms of `2-norm, but requires a lot of iterations.
Moreover, it lacks performance in terms of loss and attack
success. The detailed illustration is provided in Fig. 3. The
feature map is used to create a perturbation vector and is then
transformed into sparse representation as shown in Fig. 3 both
for MNIST and Imagenet examples.

V. ABLATION STUDIES & ANALYSIS OF RESULTS
The critical analysis of results reported in the previous section
is explained in this section with the help of ablation studies.
Dictionary learning is the key to why we achieve promising
results reported in the previous section. C&W provides a
very strong state of the art targeted attack with minimum
`2 distance but requires thousands of iterations making it
infeasible. On the other hand, we achieved promising results
by improving the efficiency of dictionary learning by training
it on diverse and sampled feature maps. The results can be
better explained by learning the effect of hyper-parameters
of the dictionary. Hyper-parameters of the dictionary learn-
ing algorithm can be used to optimize its performance. The
proposed tuned dictionary learning algorithm has two hyper-
parameters: sparsity k , and dictionary size n, i.e. no. of com-
ponents. They affect the performance in different ways.
We compute the following proximity metric to compute the
performance of the dictionary learning algorithm for different
hyper-parameters.

A. SQUARED ERROR
is the Euclidean distance between the transformed image
and the image associated with the target label. The lower
value of the squared error means less difference between
the transformed and original image and it helps us achieve
adversarial images with a much smaller `2-norm. Figure 5.
The experiments are conducted on all the test images of the
MNIST dataset. The authors in [33] showed that increas-
ing the sparsity, helps preserve more details but are less
robust against attacks as well as increasing the no. of com-
ponents also decreases the robustness of classifiers. We ana-
lyze the effect of sparsity k on the squared error in Fig. 4a.
The difference between transformed and original image

i.e. squared error is increased by increasing the sparsity.
So sparsity can be used as a trade-off parameter here for
targeted attacks.

We also studied the effect of the dictionary size i.e. the
number of components as illustrated in Fig. 4b. We computed
the values for squared error for k = 1 and k = 3 as
the number of components of the dictionary are increased.
It first decreases as the number of the components increase
but starts increasing again for k = 1. It almost attains no
further change in the squared error after the number of the
components are increased till 255. When k = 3, the error
attains stability earlier at the number of components 144 and
further starts increasing after n = 361. Increasing the number
of components improves the reconstruction and hence the
accuracy on the clean images. It can be inferred from the
visual analysis that we get the desired result at a smaller
size of the dictionary. This is in contrast to a regular trend
in the literature because our work is not a reconstruction
task where increasing the dictionary size increases accuracy
on clean images. This way we save the computation cost,
which increases as dictionary size increases in other regular
tasks.

Next, we study the effect of these parameters on our
attack strategy. The experiments in ablation studies show
that squared error is also highly correlated with the targeted
success rate (TSR) explained earlier in the metrics section.
The effect of sparsity on TSR is illustrated in Fig. 5a. The
TSR oscillates in the beginning and shows stability later after
k = 4 as shown in the graph. The TSR attains the highest
value for k = 3 and starts decreasing afterward. We see that
at k = 3, more information is retained as compared to k = 1.
Therefore, more noise is reconstructed as we increase the
sparsity but increasing sparsity further increases the squared
error i.e. the distance between original and transformed so
it negatively affects the targeted attack. The peak at k = 3
in Fig. 5a, shows that we achieve maximum value for the
targeted attack. After k = 3 the noise starts reconstructing
as we are learning the dictionary of feature maps. When the
noise gets reconstructed it does have a more strong attack on
classifier but at the same time, the targeted attack also suffers
from the reconstruction of more and more noise. That is why
the squared error also increases showing that less important
information is preserved and the `2-norm also increases.
Therefore, k = 3 serves as a sweet spot in this case. The
above details emphasize to trade off the sparsity to make an
effective attack in terms of TSR as well as squared error. The
experiments show k = 3 is the optimal value for this case.
Therefore, we used both k = 1 and k = 3 to study the effect
of the no. of the components on TSR explained in Fig. 5b
and Fig. 6.

The same behavior can be seen for the number of the
components. TSR increases at first for an increase in the
dictionary size, but subsequently decreases. For k = 3 as the
sparsity level is already high so TSR is the highest even for
n = 81. For better understanding, we have again plotted
squared error with TSR in Figures 6 and 7. It can be seen
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FIGURE 4. Left: The graph shows the effect of increasing sparsity k on Squared Error (Euclidean distance)
between transformed and original targeted images. Right: The graph shows the effect of increasing
dictionary size on squared error. The values are reported for sparsity, k = 1 and k = 3 for MNIST.

FIGURE 5. Left: The graph shows the effect of increasing sparsity k on the targeted success rate and squared error. Right: The
effect of increasing dictionary size on targeted success rate and squared error with sparsity k = 1 for MNIST.

FIGURE 6. The effect of increasing dictionary size on targeted success
rate and squared error with sparsity k = 3 for MNIST.

that the highest TSR is reported for lowest squared error
which is the reason we achieve the targeted and un-targeted
misclassifications with a very low `2-norm as reported earlier
in the results section. In conclusion, we need to have a smaller
squared error but a very small value will not retain enough
information for the targeted attack. A very high value of
squared error will again result in a higher `2-norm and low
TSR. This behavior of reconstructing noise as we increase
sparsity and the no. of the components is attributed to the
fact that we are in fact, learning the dictionary of perturbation
vectors. We also conducted experiments to check the effect of
choosing feature maps from other layers of CNN. The results
are illustrated in Table3.

TABLE 3. The classifier’s loss, attack success, mean and median `2-norm
when feature maps are from other layer of the DNN.

VI. DEFENSE EVALUATION AGAINST THE PROPOSED
ATTACK
Devising defense strategies against adversarial attacks is an
equally active area of research just like adversarial attacks.
Goodfellow et al. [5] proposed the method of adversarial
training in which the model is trained using adversarial
images. In order, to evaluate the strength of our proposed
attack we tested it against various defense methods. We used
three different defense strategies to measure the effectiveness
of our attack. Spatial Smoothing [37] is a technique used
in image processing to reduce noise in the data. The authors
in [37] applied the local smoothing method as a defense
against attacks. Local Smoothing smooths each pixel by using
neighboring pixels. Feature Squeezing [37] is used to reduce
the bit depth of images. Images are normally represented
using color bit depths which is a major cause of irrelevant
features. In this paper, the authors tested the hypothesis that
reducing bit depth can reduce the effect of adversarial attacks
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TABLE 4. The fooling ratio of adversarial attack, Spatial Smoothing (SS)
defense, Feature Squeezing (FS) defense, and JPEG Compression (JC) for
our proposed attack.

without affecting classifiers’ accuracy. The method is applied
to each pixel. JPEG Compression [38] is also used as an
effective defense technique. Its strength lies in its ability
to eliminate high-frequency signal components. These are
removed inside the square blocks of a particular image.

The training data as well as adversarial data are trans-
formed using defense methods and are then evaluated on the
same model architecture as employed in Section IV. The
data is trained on transformed training data for 30 epochs
for MNIST. In the case of Imagenet, only adversarial data
is transformed due to computational complexity and the use
of a pre-trained model. The results show that our attack is
not defended by any of these defense methods. The fooling
ratio of the classifier, when fed with sparse adversarial per-
turbations, is recorded in the second column of Table 4. The
next columns show the fooling ratio after applying different
defense strategies. It can be seen from Table 4 that our pro-
posed attack has a success rate of 86%. The next columns
show the fooling ratios after applying defense methods to the
MNIST dataset.

For MNIST, the fooling ratio remained the same for spatial
smoothing, and JPEG compression whereas, it increases in
case of feature squeezing. This is because the basic idea
behind defense methods in general and feature squeezing,
in particular, is to compare the model’s prediction on the
original sample with the same model’s prediction on the
sample after squeezing [37]. Since our proposed attack has
already used a smaller subspace and is minimum in terms of
`2-norm therefore, feature squeezing didn’t help. Moreover,
the analysis in [37] shows that feature squeezing is not
immune to adversarial adaptation and hurts the accuracy of
legitimate images as well.

In the case of Imagenet again the defense methods failed
to counter the effect of our proposed attack. It is reduced
to 52.51% and 52.23% in the case of spatial smoothing and
feature squeezing but is still not able to provide an effective
defense. The emphasis of our approach has been on squeezing
the noise magnitude. The important pixels are there but the
sparse transformation of noise and lower value of `2-norm
has made it almost difficult to detect the attack.

VII. CONCLUSION
We propose sparse adversarial image generation which
obtains comparable results in terms of `2-norm. The feature
map makes it possible to highlight the important pixels of the
image to attack. We used a feature map to create our per-
turbation vector. This perturbation vector is then optimized
using dictionary learning. The sparse adversarial noise is then

added to the image by the one-shot method. The proposed
attack is fast and minimum in terms of `2 distance between
the input image and the adversarial image. The tables show
that our results are comparable with state-of-the-art methods.
There is room for improvement in terms of the fooling ratio
of the attack. The comparable results are achieved using a
small size of dictionary thus saving the computation cost.
We motivate a new area for designing adversarial attacks
not explored before. The researchers can explore this area to
create more robust classifiers.

Further, we tested the strength of our proposed attack
with different defense strategies. The results show that these
defense methods are not able to defend neural networks from
our proposed attack. Since this is a new direction to create
adversarial examples. In the future, the proposed attack can
be combined with existing gradient-based attacks and can be
used in adversarial training to create more robust classifiers.

We have also presented novel algorithms to learn tuned
dictionary based on feature maps. These ideas to tune dictio-
naries can be extended to other machine learning problems
solved by dictionary learning. This research is still needs
improvement in terms of attack success rate, especially in the
case of targeted attacks. Since this area was not explored yet,
the future avenues hold strong. One stream of work can be
conducted to improve the results in terms of attack success
rate. The other is to test the transferability of these attacks to
other models as well as other machine learning problems.
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