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Abstract. Adversarial examples are used to evaluate the robustness of convolutional neural
networks (CNNs) to input perturbations. Researchers have proposed different types of adver-
sarial examples that attack CNNs to fool them. These attacks pose a serious threat to applications
that use deep neural networks. Existing methods for adversarial image generation struggle in
maintaining a balance between attack success rate and imperceptibility (measured in terms
of l2-norm) of the generated adversarial examples. Recent sparse methods for this problem focus
on limiting the number of pixels in an image but do not cater to the overall imperceptibility of
the adversarial images. To address these problems, we introduce adversarial attacks based on
K-singular value decomposition sparse dictionary learning. The dictionary is learned using fea-
ture maps of the targeted images from the first layer of CNN. The proposed method is evaluated
in terms of attack success rate and l2-norm. The extensive experimentation shows our attack
achieves a high success rate while maintaining a low imperceptibility score compared to state-of-
the-art methods. © 2023 SPIE and IS&T [DOI: 10.1117/1.JEI.32.3.033006]
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1 Introduction

Deep neural networks have shown remarkable performance in various tasks such as face detec-
tion, person re-identification, image classification, speech recognition, and audio/video process-
ing. Despite achieving human-level performance in these tasks these networks are vulnerable to
adversarial attacks. Szedgy et al.1 discovered the unusual mistake that deep networks make when
human imperceptible adversarial examples attack to fool them. Deep neural networks have high
representation power but this same quality is exploited to craft adversarial attacks. The adver-
sarial attacks can be defined as imperceptible transformations applied to an input image with the
goal to modify the input image correctly classified by the model into a new adversarial example
that is incorrectly classified. In other words, adversarial attacks are malicious attacks on the input
data, which may seem okay to the human eye but cause chaos in machine learning systems.
These are specially designed noises carefully added as perturbations to the data. These vulner-
abilities have intrigued researchers in this area and a lot of attacks and defense mechanisms have
been proposed since then. The fast gradient sign method2 attacks a neural network by using
gradients. Unlike, normal deep neural networks, which minimize the loss during training, this
method uses the gradients of the loss for the input image to create a new image that maximizes
the loss. CW3 attacks make use of two loss functions. The first one is the adversarial loss so that
an image gets misclassified by the classifier. Second image distance loss is built to constrain the
imperceptibility of the adversarial example. It produces adversarial examples with minimum l2-
norm but is quite expensive as it requires thousands of iterations and is very time-consuming.
JSMA4 was proposed by Papernot. It is a gradient-based white box attack that uses the saliency
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map to select the dimension, which produces the maximum error for every component of the
image. Corner Search5 is a type of sparse attack that aims to craft adversarial examples aiming at
minimizing l0-distance to the original image.

These state-of-the-art attacks have several limitations. First, in terms of l2-norm distortions,
the C&W is considered among very strong attacks but performs very slowly since it converges
after thousands of iterations making it impracticable. This high time complexity makes it unfit
for adversarial training too.6 Moreover, it is also argued that the fast gradient method computes
adversarial examples that are quite perceptible. A lot of noise has to be added to misclassify the
clean input image.7 In 2019, Shi et al.8 explained that iterative attacks produce adversarial sam-
ples that accumulate redundant noises, which are hard to remove. The above-mentioned prob-
lems highlight the importance of a need to design attacks that should be computationally efficient
and imperceptible in terms of l2-norm.

The l2-norm is a standard method to compute the length of a vector in Euclidean space. We
use it to find the similarity between two images. Here it is the squared distance between the
adversarial and original clean image. The lower the distance this means that the two images
appear the same and the noise in adversarial images is imperceptible. In this research article,
we have tried to overcome these problems using the ideas from the internal representation of
convolutional neural network (CNN), sparse representation, and dictionary learning. We have
tried to attack the internal representation of images. The feature maps constitute the internal
representation of CNN. It is the output of the convolutional layer of CNN, which detects different
features in the image to help in classification. We have used a sparse representation of activation
maps generated from the first convolutional layer of CNN and introduced it as the perturbation.
This sparse representation of feature maps is optimized using K-singular value decomposition
(K-SVD)-based dictionary learning algorithm. Sparse dictionary learning is well known for its
utility in tasks like image denoising,9 image painting,10 and camera calibration.11 Sparse dic-
tionary learning is a representation learning in which an image is represented linear sparse rep-
resentation using only a few active non-zero coefficients.12 For adapting the dictionary to achieve
sparse representation, Aharon et al.13 proposed a K-SVD method to learn the dictionary. Our
research focuses on the application of K-SVD to learn a dictionary that transforms our pertur-
bation vector to achieve imperceptibility by minimizing the l2-norm. As we mentioned earlier,
adversarial attacks are an imperceptible transformation of the data. The motivation to use dic-
tionary learning is based on its ability to transform data into a sparse linear combination of
atoms. It can transform any data to another form that retains the representation of an image
using the minimum number of pixels. This power can be used in two different ways. One is
to use dictionary learning to remove noises from the input, hence as a defense mechanism against
adversarial attacks. We have tried using its power for an alternate cause, which is to create adver-
sarial attacks. Instead of adding random noise to the input images, we have used the internal
representation of the same inputs to create the noise. This is the reason why we achieve a lower
magnitude of l2-norm as this noise is, in fact, the sparse representation (simplified 76 linear
combination of atoms) of its fellow images. The experiments are conducted on MNIST and
Imagenet datasets. The comparisons with state-of-the-art methods show the efficacy of the pro-
posed approach when we report the attack success rate and l2-norm. The salient contributions
are as follows.

1. We use activation maps to generate perturbation vector.
2. These activation maps based perturbation vector is mapped to a sparse form using dic-

tionary learning.
3. This simple approach gives promising results in terms of error and reduced l2 distance

between an input image and adversarial image.
4. We explored this promising area for designing adversarial attacks not studied before.

The rest of the paper is structured as follows. Section 2 highlights major related contributions
in literature. The methodology is discussed in Sec. 3. The experimental setup and results are
mentioned in Sec. 4. The analysis is discussed and tabulated in Sec. 5. We propose a new
black-box technique to craft adversarial examples aiming at minimizing the l0-distance to the
original image. The paper is concluded in Sec. 6.
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2 Literature Review

Szegedy et al.1 introduced the concept of adversarial examples and how they expose the vulner-
ability of neural networks. This introduction led to various attacks and defenses proposed by
different researchers and practitioners. They proposed a box-constrained L-BFGS method to
compute perturbations to fool the classifier. One of the early attacks introduced was the fast
gradient method2 exploits the gradients of the deep networks to create adversarial examples.
Later, Deep Fool14 and C&W attacks3 were introduced, which are iterative algorithms. The
C&W attacks are argued to be very strong and effective but are quite expensive in terms of
computational resources. Then several methods are proposed to generate adversarial examples
for high success rates and minimal size of perturbations.2,15

This work is inspired using activation maps or internal representations to yield adversarial
attacks. Recently quite promising research focuses on the same concept. In 2019, Inkawhich
et al. describe a transfer-based black-box targeted attack of feature space representations.16

The attack is explicitly designed for transferability and achieves so by minimizing the euclidean
distance of the feature space representation of a source image at a specific layer towards the
representation of a target image at that layer. This method generated highly transferable adver-
sarial examples. On the other hand, adversarial examples are also being generated by applying
random transformations to input images17 and by optimizing a perturbation over an ensemble of
translated images.18 These methods can be combined with existing techniques and are usually
the extension of fast gradient sign method (FGSM).2 Yucheng Shi et al.8 highlighted and worked
on two major problems. One is the need to add diversity in iterative trajectory and the second is
minimizing repetitive noises.

The recent literature reveals that most of the methods are an extension of FGSM. The detec-
tion methods normally detect the difference in normal behavior.19 Therefore, the activation map
created after an adversarial attack should not have visible noise so that detection methods do not
detect an attack as most of the defense strategies lie in noise reduction techniques.

Sparse representation is another closely related area. Some of the work regarding this
includes20 where Long et al. proposed a transfer sparse coding approach to construct robust
sparse representations for classifying labeled and unlabeled images belonging to different dis-
tributions. For adapting the dictionary to achieve sparse representation, Aharon et al.13 proposed
a K-SVD method to learn the dictionary.

This research article took inspiration from all of the above-mentioned articles, which focus
on using the internal representation of deep CNNs. Our goal here is to design an algorithm that
yields adversarial examples with a significant decrease in noise magnitude in the l2-norm. For
this purpose, we used K-SVD-based dictionary learning to convert the internal representation
into sparse representation thereby, producing a minimal change in the original images to main-
tain imperceptibility. As far as we have reviewed, dictionary learning has been only applied for
defense against adversarial attacks in literature.21,22

3 Methodology

The problem formulation followed by all three phases of our methodology is discussed in this
section.

3.1 Notation

This section explains the methodology adopted in detail. Let xl denotes the legitimate image, and
y denotes the corresponding label. FðxÞ∶X → Y denotes a classifier that allots a specific class y
to an image xl. An adversarial image xadv is generated, which is indistinguishable from xl but
misleads the classifier, i.e., FðXxadv ≠ YÞ. FðxadvÞ ¼ yt in case of targeted attacks where yt is the
desired class label we wish the classifier would predict. We evaluated our algorithms for two
types of attacks type I: un-targeted and type: II targeted. This research is an attempt to imitate the
deep internal features of the inputs associated with desired targeted labels. Sabour et al.23 did
something similar. They introduced a new framework for generating adversarial images that
appear similar to a given input image, but whose deep internal representations mimic the
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characteristics of natural target images. Activation maps are generated by the first layer of the
CNN, which contain the information of high-level important features of the image.24 This infor-
mation is used to imitate the feature space of target images.

For better understanding, the methodology is divided into three phases: first, perturbation
vector is computed using an activation map, which is detailed in Sec. 3.2. Next, these pertur-
bation vectors are optimized using K-SVD-based dictionary learning to get the sparse represen-
tation of the perturbation vectors. The detailed description is provided in Sec. 3.3. The final step
is to add sparse perturbation as noise to clean images as shown in Fig. 1.

3.2 Perturbation Vector

xl denotes the clean image, and At is the activation map of the target image. The activation maps
known as feature maps are the output of applying the filters to input, such as the input image fed
to the CNN or another feature map. In this way, an activation map for a specific input image
helps visualize and understand what features of the input are detected. These features are used by
CNN in their classification process. At is the activation map of the target label image. We want
the classifier to assign the label associated with this target image to our source image. K is the
predefined Kernel. P are the perturbation vector to be computed. The perturbation vector is trans-
formed into its sparse form and this will be added as the perturbation to the original input. This
one-shot method of adding sparse noise to the input image is explained in Sec. 3.4. The CNNs
are recognition algorithms and work on images. The convolutional layer detects features as it
applies a filter/kernel on an image. The output generated is called the activation map. Our goal is
to perturb the original image to generate a targeted activation map. This function can be
expressed as

EQ-TARGET;temp:intralink-;e001;116;157KðIs þ PÞ ¼ At: (1)

Calculating the perturbation vector from the above equation

EQ-TARGET;temp:intralink-;e002;116;113P ¼ K−1ðAtÞ − Is: (2)

Fig. 1 Perturbation vectors are computed from CNNs. The vectors are optimized using K-SVD to
obtain sparse representation. This sparse representation is added as noise to the original image to
craft an adversarial example.

Jahangir and Shafait: Sparse adversarial image generation using dictionary learning

Journal of Electronic Imaging 033006-4 May∕Jun 2023 • Vol. 32(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12 Sep 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.3 K-SVD

Sparse coding is an efficient way of data representation. The aim is to learn a set of basis func-
tions such that each input signal can be well represented by a linear combination of minimum
bases. It has a wide range of applications and has attracted increased interest due to its state-of-
the-art performance. This paper uses it as the solution to the problem of redundant noises, and
smaller l2 norm. We have used K-SVD based dictionary learning algorithm proposed by
Aharon.13 The K-SVD has been tailored and applied to our proposed problem to generate sparse
adversarial images. The algorithm uses a SVD approach. It is a generalization of the k-means
clustering method, which works iteratively between sparse coding and dictionary updating. It
solves the problem by transforming an input signal X to a sparse linear combination of not more
than T items and is given as

Algorithm 1 Sparse K-SVD dictionary learning for perturbations

Input: P → Matrix containing all perturbation vectors;

Result: D → Learned dictionary, TP → sparse representation of all perturbation vectors

S → Size of dictionary, i.e., total number of atoms;

tp → Sparse representation of single perturbation vector;

for t ¼ 1 do iterations do

TP←OMPðD;PÞ;

Dictionary update stage;

for i ¼ 1 do do do

L ¼ indices of non-zero elements in TP(i ,:);

P̂ ¼ PL;

T̂P ¼ TPL;

E ¼ P̂ −
P

S≠i dS⋆tpT
S ;

U⋆E⋆VT ≈ SVDðEÞ;

di ¼ Uð∶;1Þ;

Algorithm 2 Activation map as perturbation to learn sparse dictionary

Result: p → perturbation

Input: A → activation map;

N → total number of input image samples;

K → kernel;

x l → clean input image;

for i < jNj do

p←K −1ðAi Þ − xl ;

i←i þ 1;

Return p
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EQ-TARGET;temp:intralink-;e003;116;735X ¼ Dα; (3)

where α is a vector that contains coefficients of the linear combination mathematically, the
problem of sparse representation is formulated as an optimization problem of finding D, which
satisfies

EQ-TARGET;temp:intralink-;e004;116;677min
D;α

kX −Dαk2 s:t: kαk < T; (4)

where T is some predefined threshold that controls the sparseness k:k0 denotes the l0 norm is the
count of non-zero elements.

The above-formulated problem computes and performs sparse coding of every input signal
using dictionary learning. The sparse representation of input signals is an NP-hard problem. The
representation is therefore approximated and several pursuit algorithms are proposed to solve the
approximation problem. K-SVD is flexible and normally used with greedy orthogonal matching
pursuit algorithm.

This research is about the application of the K-SVD dictionary learning algorithm to solve the
optimization problem in Eq. (2). Mapping the K-SVD algorithm to Eq. (2) gives us

EQ-TARGET;temp:intralink-;e005;116;533min
D;α

kP −Dαk2 s:t: kαk < T; (5)

where P = all perturbation vectors.

3.4 Sparse Adversarial Image

The final stage of our method is the computation of a sparse adversarial example. We add the
sparse representation/noise of desired perturbation vector to our original legitimate image,
referred to as the one-shot method. The magnitude of noise can be controlled by the value
of ϵ. The magnitude is adjusted to achieve a low l2 norm. The l2 norm is the euclidean distance
between clean and noisy images. The lower values of l2 norm help achieve imperceptibility and
make it hard to detect such adversarial examples. The sparse adversarial image if ¼ s calculated
as

EQ-TARGET;temp:intralink-;e006;116;363Xadv ¼ xl þ ϵP: (6)

4 Experiments

The datasets used for the evaluation of the proposed algorithm are MNIST and Imagenet. We
have compared our method with the C&W,3 FGSM,2 and Corner Search5 methods. These are
some of the most widely used and state-of-the-art methods in literature. Corner Search is rel-
atively new and belongs to the category of sparse attacks. We have tried to cover a variety of
competitive attacks i.e. gradient-based, iterative, and sparse attacks with which to compare our
method. C&W3 is a powerful attack method that generates adversarial examples with a prom-
ising minimum magnitude of l2 noise, yet its thousands of iterations make it almost impossible
to use or implement due to its time complexity.6,7

We have used small values of epsilon (ϵ) mostly in the negative power of 10 to create our
adversarial examples. The epsilon determines the strength of the attack, such that ϵ ¼ 0 means
no attack. The common values used in the literature range from 0.1 to 0.8 to study the effect of
the attack. The greater the value of ϵ, the higher the magnitude of the noise is, and the greater the
l2-norm is. We have used smaller values as compared to the literature and show that even with
such a smaller magnitude of the noise, we can create a successful attack while keeping imper-
ceptibility low in terms of l2-norm.

4.1 Metrics

In this section, we list down mathematical formulae of various metrics to evaluate the perfor-
mance of our proposed approach. We also discuss here the statistical standards and terms related
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to the field. Machine learning algorithms or deep learning algorithms specifically learn from
data. They find relationships, develop understanding, make decisions, and evaluate their perfor-
mance from the training data they are given. The next section describes how accurately our
chosen models perform on MNISTand Imagenet datasets. In supervised learning where the class
labels to the input data are known, a deep learning algorithm learns a function that fits the train-
ing data with the goal to find a function that minimizes loss. Loss is a quantitative measure of
how much your predictions differ from the actual output (label). Loss is inversely proportional to
the correctness or accuracy of the model. The more the loss, the less accurate the model. First,
classifiers loss on test data is calculated. The loss function compares the actual and predicted
output values of a classifier and measures how well the CNN models the training data. The goal
of a classifier is to minimize the loss between the predicted and actual outputs while training. A
small value of loss indicates the classifier recognizes and classifies the images very well. In
targeted attacks reported in the next section, the lower magnitude of loss indicates a stronger
attack whereas, in the case of untargeted attacks the greater the loss, the stronger the attack is. We
have also reported attack success rates. This indicates the rate at which the number of input
samples is miss-classified by the classifier when it is fed with adversarial examples. The equation
for mean and median l2-norm are given as follows:

EQ-TARGET;temp:intralink-;e007;116;532Distanceðxl; xaÞ ¼ kxl − xak2; (7)

EQ-TARGET;temp:intralink-;e008;116;489Median ¼ medianðdistanceðxl; xaÞjx ∈ XÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;467Mean ¼ 1

N

XN

n¼1

distanceðxl; xaÞjx ∈ X: (9)

4.2 Experimental Results

The MNIST dataset is divided into training and testing sets. The training set consists of 50,000
images, whereas the testing set contains 10,000 black-and-white handwritten digit images. A
CNN model is trained on the MNIST dataset for 50 epochs achieving 97.68% accuracy and
a loss of 0.07. The adversarial images were generated with ϵ ¼ 0.00005 using the proposed
strategy on the MNIST dataset.

The Imagenet dataset consists of images representing 1000 classes. The test set consists
of 10,000 images. However, we evaluated our method on 1000 images from the test set
after training a pretrained VGG-19 model. We have chosen 1000 images due to computational
complexity. It achieved 70.2% accuracy and 1.20 error. The adversarial images were generated
with ϵ ¼ 0.0001 using the proposed strategy on the Imagenet dataset. In the case of MNIST, all
10,000 images from the validation set are used for evaluation, whereas, in the case of Imagenet,
1000 images from the validation set are used for the evaluation purpose. The untargeted attacks
are conducted using any sparse perturbation vectors, whereas, for targeted attacks, the specific
sparse representation of the targeted label is used. The implementations from the adversarial
robustness toolbox library are used to reproduce results for FGSM and C&W methods.25

The original publicly available implementation for corner search is used for its evaluation.
The metric values are computed for targeted as well as untargeted attacks. In the case of targeted
attacks, following the framework from Ref. 6, we compute adversarial images for different target
classes. Each individual attack result is calculated and finally, the average score of all attacks is
reported. The values are reported for mean and median l2-norm. The smaller the value of l2-
norm, the stronger the attack.

4.2.1 Type I attack: untargeted

The values of success rates mean and median for untargeted attacks are listed in Table 1. The
values of mean and median l2-norm show the efficacy of the proposed approach. The mean and
median magnitude of l2-norm is 0.0002 for MNIST and 0.2 for Imagenet. It is lower than any
state-of-the-art attacks in the case of the MNIST dataset. In the case of Imagenet, it performs
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better than corner search and fast gradient method and is quite competitive compared to C&W.
The l2-norm of C&W is 0.0004 in the case of Imagenet but its attack success rate and loss are
lower than our sparse adversarial method.

4.3 Type II attack: targeted

The second column in Table 2 records the error. The lower error value implies a stronger attack.
The magnitude of noise, i.e., value of ε is kept high, especially in the case of FGSM. Therefore,
results recorded against FGSM and C&Ware quite promising too. The high magnitude is chosen
because the otherwise fast gradient method does not attack the classifier at all. Though C&W is
the most effective targeted attack and reports comparable values for mean and median l2, it is
quite impractical due to being time intensive.6

An illustration of the results can be interpreted in Fig. 2.

Table 1 From left to right: type of attack, loss, attack success rate, mean, andmedian l2-norm our
attack versus others on MNIST and Imagenet in untargeted case.

Attack method Loss Attack succ. Mean l2 Median l2

Dataset: MNIST

Fast gradient method 10.4 73% 0.1 0.1

Corner search 2.0 88% 7.9 8.8

C&W 2.8 43% 0.01 0.01

Sparse adversarial image 11.05 69% 0.0003 0.0003

Dataset: Imagenet

Fast gradient method 3.4 72% 0.7 0.7

C&W 1.2 42% 0.0004 0.0004

Sparse adversarial image 2.26 48% 0.2 0.2

Table 2 The loss, attack success rate, mean, and median l2 of our attack versus MNIST and
Imagenet datasets in targeted case. A lower value of the loss indicates a stronger attack.

Attack Loss Attack succ. Mean l2 Median l2

Dataset: MNIST (targeted attack)

Fast gradient method 8.7 18.3% 0.1 0.1

Corner search 46.6 1.20% 0.7 0

C&W 29.51 23% 0.005 0.005

Sparse adversarial image 16.79 15.11% 0.0002 0.0002

Dataset: imagenet (targeted attack)

Fast gradient method 23.6 1% 1.36 1.36

C&W 18.62 1% 0.001 0.001

Sparse adversarial image 18.89 2.03% 0.2 0.2
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5 Effect of Dictionary Size on Attack Success Rate

This paper has motivated the application of dictionary learning to create adversarial examples.
The approach is novel and introduces a new application area of dictionary learning. Since this
paper revolves around dictionary learning and is the heart of the proposed method we dug a little
deeper and investigated the effect of dictionary size on our attack method. This hyperparameter is
very important as its tuning can save us a lot of time and effort. The dictionary size is determined
by the number of components used to compute the dictionary. A series of experiments are con-
ducted to explore this effect. We evaluated the performance of our attack for several possible
options of the number of components and plotted a graph to analyze the effect. This analysis also
helps justify the results reported in the previous section. It can be seen from Fig. 3 that the attack
success rate slightly increases with the increase in dictionary size and then starts decreasing. In
2018, Moosavi et al.22 conducted an extensive analysis of the hyper-parameters of dictionary
learning when applied to an image-denoising problem. They analyzed that increasing the size
of the dictionary decreases the robustness of the classifier. During a reconstruction task, the
increase in dictionary size increases reconstruction because more information is retained and
improves image denoising too. In our case, the attack success rate continuously decreases after
the number of components = 100. It just oscillates between the number of components = 180 to
the number of components = 280 but then gets stable and does not oscillate after that. The highest
success rate is achieved at the number of components = 100. We have reported the results in the
previous section of the number of components = 81. All these attacks are done on the test set
from the MNIST dataset. This analysis highlights the following significant points: First, the main
benefit can be visualized in the form that we achieve the desired result in a very small size of
dictionary saving us time and cost. The results are in contrast to the conventional trend discussed
in the literature. This is because here we are not using dictionary learning for denoising or recon-
struction purposes, which would increase the accuracy. It is concluded that increasing the dic-
tionary size (number of components) will retain more information but since we are learning a

Fig. 2 Source/legitimate image, target image, and adversarial images for MNIST and Imagenet
Datasets.

Fig. 3 The graph shows the effect of increasing dictionary size that is the number of components
on attack success rate using sparse adversarial method.
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dictionary of noises it will not increase the attack success rate. In the future, we can work on
tuning these hyperparameters to improve our results (Fig. 3).

6 Conclusion

In this research, we have explored the application of sparse representation to create adversarial
attacks against deep neural networks. We proposed a sparse adversarial image generation
approach that achieves comparable performance when compared to state-of-the-art methods
in terms of l2-norm, attack success rate, and loss on test data. The proposed strategy uses the
activation map, which makes it possible to manipulate the internal working of the image to
attack. The activation maps from the first layer of CNNs are used. These perturbation vectors
are transformed into their respective sparse representations using K-SVD-based dictionary learn-
ing algorithm. The sparse representation is the sparse noise that we want to add to the original
image to create an adversarial example. We can conclude from the experiments in Sec. 4.2 that
the proposed approach can provide a good balance between the attack success rate and the imper-
ceptibility of the attack. Our sparse adversarial attack shows promising results regarding the
magnitude of noise measured as l2-norm. It either performs better than state of the art or is
competitive in other cases. The specific perturbation is chosen randomly from the set of all per-
turbations generated. These perturbations can have different effects on the success rates of the
attacks. In the future, we plan to optimize this approach into a more sophisticated selection
approach.
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